Dataset of Monitoring Water Quality Parameters Using Multi-source Data-driven Machine Learning Models
DOI:10.4121/d866419b-60fe-4fff-b2e3-104e2cc37381.v1
The DOI displayed above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
DOI: 10.4121/d866419b-60fe-4fff-b2e3-104e2cc37381
DOI: 10.4121/d866419b-60fe-4fff-b2e3-104e2cc37381
Datacite citation style
Zhao, Yubo (2025): Dataset of Monitoring Water Quality Parameters Using Multi-source Data-driven Machine Learning Models. Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/d866419b-60fe-4fff-b2e3-104e2cc37381.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
Categories
Geolocation
The Yangtze River Basin in Hubei and Hunan provinces, China
lat (N): 28°–31.6°
lon (E): 110°–115°
Time coverage 2024-02-13
Licence CC BY 4.0
The data is sourced from China's National Surface Water Quality Automatic Monitoring Real time Data Release System( https://earthengine.google.com/ )The data range is the water quality data of 74 monitoring stations in the Yangtze River Basin of Hubei Province, Hunan Province, China (longitude 110 ° -115 °, Latitude 28 ° -31.6 °), data types include water temperature, PH, Dissolved oxygen, chemical oxygen demand, total phosphorus, total nitrogen, ammonia nitrogen, turbidity, conductivity. The data collection time is February 13th, 2024.
History
- 2025-04-23 first online, published, posted
Publisher
4TU.ResearchDataFormat
CSVData link
https://earthengine.google.com/Organizations
Heilongjiang University, Institute of water conservancy and electric powerDATA
Files (2)
- 10,848 bytesMD5:
aeda5bd7fdf17e5f480a06ae2eb71dc0
readme.docx - 6,051 bytesMD5:
7ba65c066f19575b0f317c7a19431216
data.csv -
download all files (zip)
16,899 bytes unzipped