Cleanup
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 548707 29.4 1224502 65.4 686462 36.7
## Vcells 1037568 8.0 8388608 64.0 1875970 14.4
## Warning: package 'plyr' was built under R version 4.4.1
## Warning: package 'dplyr' was built under R version 4.4.1
## Warning: package 'tidyr' was built under R version 4.4.1
## Warning: package 'reshape2' was built under R version 4.4.1
## Warning: package 'lubridate' was built under R version 4.4.1
## Warning: package 'purrr' was built under R version 4.4.1
## Warning: package 'Hmisc' was built under R version 4.4.1
## Warning: package 'stringr' was built under R version 4.4.1
## Warning: package 'psych' was built under R version 4.4.1
## Warning: package 'exact2x2' was built under R version 4.4.1
## Warning: package 'exactci' was built under R version 4.4.1
## Warning: package 'testthat' was built under R version 4.4.1
## Warning: package 'car' was built under R version 4.4.1
## Warning: package 'carData' was built under R version 4.4.1
## Warning: package 'lme4' was built under R version 4.4.1
## Warning: package 'pscl' was built under R version 4.4.1
## Warning: package 'betareg' was built under R version 4.4.1
## Warning: package 'glmmTMB' was built under R version 4.4.1
## Warning: package 'arm' was built under R version 4.4.1
## Warning: package 'rcompanion' was built under R version 4.4.1
## Warning: package 'PMCMRplus' was built under R version 4.4.1
## Warning: package 'lmtest' was built under R version 4.4.1
## Warning: package 'zoo' was built under R version 4.4.1
## Warning: package 'DHARMa' was built under R version 4.4.1
## Warning: package 'epitab' was built under R version 4.4.1
## Warning: package 'xtable' was built under R version 4.4.1
## Warning: package 'kableExtra' was built under R version 4.4.1
## Warning: package 'sjPlot' was built under R version 4.4.1
## Warning: package 'ggplot2' was built under R version 4.4.1
## Warning: package 'ggthemes' was built under R version 4.4.1
## Warning: package 'GGally' was built under R version 4.4.1
## Warning: package 'corrplot' was built under R version 4.4.1
## Warning: package 'namer' was built under R version 4.4.1
Set working directory
Load user-defined functions
## Loading required package: tmvtnorm
## Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
## logical.return = TRUE, : there is no package called 'tmvtnorm'
Import files
## [1] "prolific.id" "participant.id" "participant.status"
## [4] "cost" "arousal1" "arousal2"
## [7] "arousal3" "attentionchckyes" "attentionoutcomes"
## [10] "bath" "birthyear" "comment"
## [13] "confirmconsent" "consent" "detect4"
## [16] "detect5" "detect1" "detect2"
## [19] "detect3" "detectiontext" "expbathing"
## [22] "expcost" "expekf" "expfloodh"
## [25] "expfloodr" "expprof" "expprof.text"
## [28] "expprofyears" "gender" "valence1"
## [31] "valence2" "valence3" "ekf"
## [34] "uk" "other.country" "floodr"
## [37] "floodh" "sewerservice" "tot.affect1"
## [40] "tot.affect2" "tot.affect3" "tot.debriefing"
## [43] "tot.demographics" "tot.end" "tot.experience"
## [46] "tot.intro" "tot.outcomes" "glt"
## [49] "crt" "bnt" "e.cond"
## [52] "practice.1" "practice.2" "practice.3"
## [55] "rpe_1_1" "rpe_1_2" "rpe_2_1"
## [58] "rpe_2_2" "rpe_5_1" "rpe_5_2"
## [61] "rpe_6_1" "rpe_6_2" "rpe_9_1"
## [64] "rpe_9_2" "rpe_10_1" "rpe_10_2"
## [67] "rpe_11_1" "rpe_11_2" "rpe_12_1"
## [70] "rpe_12_2" "rpe_13_1" "rpe_13_2"
## [73] "rpe_14_1" "rpe_14_2" "rpe_15_1"
## [76] "rpe_15_2" "rpe_17_1" "rpe_17_2"
## [79] "rpe_20_1" "rpe_20_2" "rpe_21_1"
## [82] "rpe_21_2" "rpe_22_1" "rpe_22_2"
## [85] "rpe_23_1" "rpe_23_2" "rpe_24_1"
## [88] "rpe_24_2" "rpe_25_1" "rpe_25_2"
## [91] "rpe_26_1" "rpe_26_2" "rpe_27_1"
## [94] "rpe_27_2" "rpv_1_1" "rpv_1_2"
## [97] "rpv_2_1" "rpv_2_2" "rpv_5_1"
## [100] "rpv_5_2" "rpv_6_1" "rpv_6_2"
## [103] "rpv_9_1" "rpv_9_2" "rpv_10_1"
## [106] "rpv_10_2" "rpv_11_1" "rpv_11_2"
## [109] "rpv_12_1" "rpv_12_2" "rpv_13_1"
## [112] "rpv_13_2" "rpv_14_1" "rpv_14_2"
## [115] "rpv_15_1" "rpv_15_2" "rpv_17_1"
## [118] "rpv_17_2" "rpv_20_1" "rpv_20_2"
## [121] "rpv_21_1" "rpv_21_2" "rpv_22_1"
## [124] "rpv_22_2" "rpv_23_1" "rpv_23_2"
## [127] "rpv_24_1" "rpv_24_2" "rpv_25_1"
## [130] "rpv_25_2" "rpv_26_1" "rpv_26_2"
## [133] "rpv_27_1" "rpv_27_2" "ct_1_crt"
## [136] "ct_2_crt" "ct_3_crt" "ct_1_bnt"
## [139] "ct_2a_bnt" "ct_2b_bnt" "ct_3_bnt"
## [142] "ct_1_glt" "ct_2_glt" "rpe.why_1_1"
## [145] "rpe.why_2_1" "rpe.why_5_1" "rpe.why_6_1"
## [148] "rpe.why_9_1" "rpe.why_10_1" "rpe.why_11_1"
## [151] "rpe.why_12_1" "rpe.why_13_1" "rpe.why_14_1"
## [154] "rpe.why_15_1" "rpe.why_17_1" "rpe.why_20_1"
## [157] "rpe.why_21_1" "rpe.why_22_1" "rpe.why_23_1"
## [160] "rpe.why_24_1" "rpe.why_25_1" "rpe.why_26_1"
## [163] "rpe.why_27_1" "rpe.why_1_2" "rpe.why_2_2"
## [166] "rpe.why_5_2" "rpe.why_6_2" "rpe.why_9_2"
## [169] "rpe.why_10_2" "rpe.why_11_2" "rpe.why_12_2"
## [172] "rpe.why_13_2" "rpe.why_14_2" "rpe.why_15_2"
## [175] "rpe.why_17_2" "rpe.why_20_2" "rpe.why_21_2"
## [178] "rpe.why_22_2" "rpe.why_23_2" "rpe.why_24_2"
## [181] "rpe.why_25_2" "rpe.why_26_2" "rpe.why_27_2"
## [184] "dom.2" "dom2.rank" "risk.e_1"
## [187] "risk.e_2" "risk.v_1" "risk.v_2"
## [190] "risk.g5.e_1" "risk.g5.e_2" "risk.g5.v_1"
## [193] "risk.g5.v_2" "risk.g9.e_1" "risk.g9.e_2"
## [196] "risk.g9.v_1" "risk.g9.v_2" "risk.g10.e_1"
## [199] "risk.g10.e_2" "risk.g10.v_1" "risk.g10.v_2"
## [202] "risk.g21.e_1" "risk.g21.e_2" "risk.g21.v_1"
## [205] "risk.g21.v_2" "risk.e" "risk.v"
## [208] "risk.diff" "risk.m.diff" "risk.nm.e"
## [211] "risk.nm.v" "risk.difficult.diff" "risk.easy.diff"
## [214] "exp" "training" "tot.overall"
## [217] "s.per.choice" "s.per.choice.t1" "s.per.choice.t2"
## [220] "s.per.choice.cost" "s.per.choice.dom.2" "indiff"
## [223] "e.gain" "e.loss" "p.gain"
## [226] "p.loss" "etc" "detected"
## [229] "detected.m" "detected.5_1" "detected.9_1"
## [232] "detected.10_1" "detected.21_1" "detected.5_2"
## [235] "detected.9_2" "detected.10_2" "detected.21_2"
## [238] "detected.difficult" "detected.easy" "detect.post"
## [241] "detected.post" "smc_1" "smc_2"
## [244] "smc" "phi_1" "phi_2"
## [247] "phi" "smc_m_1" "smc_m_2"
## [250] "smc_m" "phi_m_1" "phi_m_2"
## [253] "phi_m" "smc_nm_1" "smc_nm_2"
## [256] "smc_nm" "phi_nm_1" "phi_nm_2"
## [259] "phi_nm" "smc_m_difficult" "smc_m_easy"
## [262] "risk"
Note: Negative values are change towards risk seeking, positive values towards risk averse
##
## -22 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18
## 2 2 2 8 8 15 13 21 32 32 31 29 21 26 19 13 12 4 5 1
## 20 22
## 1 1
## Risk attitude n min Q.25 median mean Q.75 max sd
## 1 1st trial series 298 -20 -6 0 -0.24161074 6 18 7.669653
## 2 2nd trial series 298 -20 -6 0 -0.14765101 6 18 7.881595
## 3 Difference (1st-2nd) 298 -22 -4 0 0.09395973 6 22 7.671138
## 4 abs(Difference (1st-2nd)) 298 0 2 6 6.08053691 8 22 4.664526
## kurtosis skewness
## 1 2.385774 -0.01546359
## 2 2.228878 -0.05171120
## 3 2.925944 -0.02808264
## 4 3.551229 0.90198936
| Risk attitude | Condition | risk seeking | risk neutral | risk averse | n | min | Q.25 | median | mean | Q.75 | max | sd | kurtosis | skewness |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All conditions | ||||||||||||||
| All | 1st trial series | 141 | 24 | 133 | 298 | -20 | -6 | 0 | -0.242 | 6 | 18 | 7.670 | 2.386 | -0.015 |
| All | 2nd trial series | 134 | 28 | 136 | 298 | -20 | -6 | 0 | -0.148 | 6 | 18 | 7.882 | 2.229 | -0.052 |
| All | Difference (1st-2nd) | 135 | 31 | 132 | 298 | -22 | -4 | 0 | 0.094 | 6 | 22 | 7.671 | 2.926 | -0.028 |
| All | Difference (absolute no.) | – | – | – | 298 | 0 | 2 | 6 | 6.081 | 8 | 22 | 4.665 | 3.551 | 0.902 |
| By experimental condition | ||||||||||||||
| All | Difference (numeric) | 66 | 15 | 70 | 151 | -18 | -4 | 0 | 0.848 | 6 | 22 | 7.816 | 2.794 | 0.094 |
| All | Difference (icons) | 69 | 16 | 62 | 147 | -22 | -6 | 0 | -0.680 | 4 | 16 | 7.467 | 2.943 | -0.202 |
| Set | Condition | Risk seeking | Risk neutral | Risk averse | n | min | Q.25 | median | mean | Q.75 | max | sd | kurtosis | skewness |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All outcome domains | ||||||||||||||
| All | both | 138 | 15 | 145 | 298 | -32 | -12 | 0 | -0.389 | 10 | 28 | 13.529 | 2.172 | -0.025 |
| All | numeric | 21 | 7 | 123 | 151 | -26 | 3 | 10 | 8.530 | 14 | 28 | 9.927 | 3.495 | -0.572 |
| All | icons | 117 | 8 | 22 | 147 | -32 | -16 | -10 | -9.551 | -2 | 28 | 10.214 | 3.936 | 0.609 |
| Common domain | ||||||||||||||
| Cost | both | 135 | 19 | 144 | 298 | -18 | -6 | 0 | -0.181 | 6 | 20 | 7.851 | 2.394 | -0.176 |
| Cost | numeric | 26 | 10 | 115 | 151 | -16 | 2 | 4 | 4.609 | 8 | 20 | 5.699 | 3.441 | -0.353 |
| Cost | icons | 109 | 9 | 29 | 147 | -18 | -10 | -6 | -5.102 | 0 | 14 | 6.626 | 2.751 | 0.238 |
| Priority domain | ||||||||||||||
| Other | both | 139 | 31 | 128 | 298 | -20 | -6 | 0 | -0.208 | 6 | 18 | 7.532 | 2.379 | 0.017 |
| Other | numeric | 32 | 18 | 101 | 151 | -14 | 0 | 4 | 3.921 | 8 | 18 | 6.337 | 2.910 | -0.299 |
| Other | icons | 107 | 13 | 27 | 147 | -20 | -10 | -4 | -4.449 | 0 | 14 | 6.197 | 2.931 | 0.313 |
| By priority domain | ||||||||||||||
| House flooding | both | 64 | 18 | 70 | 152 | -16 | -4 | 0 | 0.618 | 6 | 18 | 7.481 | 2.565 | -0.014 |
| Waterbody pollution | both | 46 | 9 | 40 | 95 | -20 | -8 | 0 | -0.968 | 6 | 14 | 7.816 | 2.072 | -0.058 |
| Road flooding | both | 12 | 3 | 13 | 28 | -10 | -4 | 0 | 1.071 | 6 | 16 | 6.960 | 2.204 | 0.243 |
| Bathing restriction | both | 17 | 1 | 5 | 23 | -14 | -8 | -6 | -4.087 | -1 | 8 | 6.014 | 2.325 | 0.237 |
| By trial series | ||||||||||||||
| 1st trial series | both | 141 | 24 | 133 | 298 | -20 | -6 | 0 | -0.242 | 6 | 18 | 7.670 | 2.386 | -0.015 |
| 2nd trial series | both | 134 | 28 | 136 | 298 | -20 | -6 | 0 | -0.148 | 6 | 18 | 7.882 | 2.229 | -0.052 |
| Change between trials | ||||||||||||||
| Change (1st-2nd) | both | 135 | 31 | 132 | 298 | -22 | -4 | 0 | 0.094 | 6 | 22 | 7.671 | 2.926 | -0.028 |
| Change (1st-2nd) | numeric | 66 | 15 | 70 | 151 | -18 | -4 | 0 | 0.848 | 6 | 22 | 7.816 | 2.794 | 0.094 |
| Change (1st-2nd) | icons | 69 | 16 | 62 | 147 | -22 | -6 | 0 | -0.680 | 4 | 16 | 7.467 | 2.943 | -0.202 |
| No. of changes | both | – | – | – | 298 | 0 | 2 | 6 | 6.081 | 8 | 22 | 4.665 | 3.551 | 0.902 |
Main observations:
| Changes | Participants |
|---|---|
| 0 | 14 |
| 1 | 31 |
| 2 | 89 |
| 3 | 66 |
| 4 | 53 |
| 5 | 25 |
| 6 | 17 |
| 7 | 3 |
| n | min | Q.25 | median | mean | Q.75 | max | sd | kurtosis | skewness |
|---|---|---|---|---|---|---|---|---|---|
| 298 | 0 | 2 | 3 | 2.909 | 4 | 7 | 1.525 | 2.762 | 0.359 |
| unchanged | changed | |
|---|---|---|
| undetected | 1369 | 795 |
| detected | 148 | 72 |
## difference
## detected 0 1 2 3 4 5 6 7
## 0 12 19 68 48 41 22 11 2
## 1 1 3 10 6 5 2 4 0
## 2 0 1 3 3 2 0 0 0
## 3 1 1 1 3 2 1 0 0
## 4 0 1 3 1 3 0 2 1
## 5 0 1 1 0 0 0 0 0
## 6 0 1 2 2 0 0 0 0
## 7 0 2 1 1 0 0 0 0
## 8 0 2 0 2 0 0 0 0
## difference
## detected 0 2 4 6 8 10 12 14 16 18 20 22
## 0 24 46 36 36 24 23 13 8 6 3 1 3
## 1 3 6 10 2 3 3 2 1 1 0 0 0
## 2 1 3 3 1 0 0 0 1 0 0 0 0
## 3 0 4 1 0 1 1 0 2 0 0 0 0
## 4 1 0 0 3 3 0 4 0 0 0 0 0
## 5 1 0 0 0 0 1 0 0 0 0 0 0
## 6 0 1 0 3 1 0 0 0 0 0 0 0
## 7 1 0 2 1 0 0 0 0 0 0 0 0
## 8 0 1 1 1 0 0 1 0 0 0 0 0
## n min Q.25 median mean Q.75 max sd kurtosis skewness
## 75 0 2 3 2.853333 4 7 1.556966 2.921831 0.6133666
## n min Q.25 median mean Q.75 max sd kurtosis skewness
## 223 0 2 3 2.928251 4 7 1.516949 2.720678 0.2690666
## n min Q.25 median mean Q.75 max sd kurtosis skewness
## 75 0 2 4 5.786667 8 16 4.153453 2.411086 0.5987997
## n min Q.25 median mean Q.75 max sd kurtosis skewness
## 223 0 2 6 6.179372 10 22 4.828978 3.650087 0.9454074
## n min Q.25 median mean Q.75 max sd kurtosis skewness
## 75 0.4 0.575 0.65 0.6696667 0.7625 0.95 0.1216645 2.410324 0.3097695
## n min Q.25 median mean Q.75 max sd kurtosis skewness
## 223 0.3 0.575 0.65 0.6449552 0.725 0.925 0.1205038 2.930136 -0.1443457
## n min Q.25 median mean Q.75 max sd kurtosis skewness
## 298 0 2 4 4.127517 6 16 3.367079 3.79573 1.010676
## n min Q.25 median mean Q.75 max sd kurtosis skewness
## 298 0 2 4 3.926174 6 18 3.145397 4.108992 0.8673504
## n min Q.25 median mean Q.75 max sd kurtosis skewness
## 298 0.15 0.55 0.7 0.6659396 0.75 1 0.1536513 3.203327 -0.4573215
## n min Q.25 median mean Q.75 max sd kurtosis skewness
## 298 0.2 0.55 0.625 0.6364094 0.75 0.95 0.1533296 2.605394 -0.05397495
Shapiro Wilk Normality test on risk attitude scores with H0 that data follow normal distribution * H0: rejected
Shapiro Wilk Normality test on change in risk attitude scores with H0 that data follow normal distribution * H0: not rejected
| Gamble | P(A) | Choice correction | Indifferent | Expected gain | Expected loss | Possible gain | Possible loss | Other reason |
|---|---|---|---|---|---|---|---|---|
| Common domain (cost) | ||||||||
| G1 | 0.671 | 3 | 12 | 117 | 18 | 100 | 40 | 8 |
| G2 | 0.721 | 2 | 11 | 142 | 16 | 93 | 26 | 8 |
| G5 | 0.503 | 22 | 17 | 106 | 18 | 89 | 41 | 5 |
| G6 | 0.423 | 6 | 16 | 52 | 83 | 73 | 60 | 8 |
| G9 | 0.436 | 25 | 9 | 87 | 12 | 116 | 43 | 6 |
| G10 | 0.366 | 31 | 23 | 52 | 66 | 60 | 60 | 6 |
| G11 | 0.617 | 1 | 15 | 66 | 64 | 65 | 75 | 12 |
| G12 | 0.440 | 1 | 20 | 22 | 131 | 21 | 97 | 6 |
| G13 | 0.537 | 4 | 10 | 24 | 139 | 21 | 95 | 5 |
| G14 | 0.487 | 5 | 27 | 51 | 71 | 67 | 67 | 10 |
| G15 | 0.201 | 2 | 23 | 25 | 142 | 13 | 84 | 9 |
| G17 | 0.473 | 3 | 25 | 13 | 113 | 23 | 116 | 5 |
| G20 | 0.470 | 2 | 12 | 45 | 67 | 80 | 75 | 17 |
| G21 | 0.500 | 29 | 6 | 94 | 24 | 105 | 36 | 4 |
| G22 | 0.329 | 5 | 18 | 88 | 49 | 77 | 51 | 10 |
| G23 | 0.554 | 3 | 11 | 110 | 17 | 111 | 38 | 8 |
| G24 | 0.520 | 1 | 5 | 110 | 16 | 113 | 41 | 12 |
| G25 | 0.416 | 2 | 6 | 27 | 114 | 44 | 94 | 11 |
| G26 | 0.430 | 4 | 17 | 80 | 69 | 48 | 69 | 11 |
| G27 | 0.685 | 2 | 10 | 61 | 73 | 71 | 71 | 10 |
| Priority domain | ||||||||
| G1 | 0.534 | 2 | 31 | 55 | 56 | 61 | 77 | 16 |
| G2 | 0.557 | 1 | 17 | 72 | 42 | 90 | 69 | 7 |
| G5 | 0.440 | 28 | 28 | 68 | 37 | 64 | 67 | 6 |
| G6 | 0.433 | 2 | 22 | 55 | 71 | 49 | 90 | 9 |
| G9 | 0.473 | 29 | 24 | 50 | 47 | 57 | 83 | 8 |
| G10 | 0.426 | 24 | 20 | 36 | 65 | 60 | 82 | 11 |
| G11 | 0.393 | 1 | 19 | 37 | 85 | 52 | 93 | 11 |
| G12 | 0.433 | 2 | 24 | 25 | 93 | 28 | 116 | 10 |
| G13 | 0.423 | 4 | 15 | 19 | 95 | 35 | 121 | 9 |
| G14 | 0.443 | 3 | 35 | 40 | 59 | 52 | 101 | 8 |
| G15 | 0.265 | 3 | 22 | 25 | 102 | 22 | 114 | 10 |
| G17 | 0.574 | 0 | 29 | 26 | 87 | 26 | 122 | 8 |
| G20 | 0.537 | 6 | 24 | 37 | 69 | 48 | 102 | 12 |
| G21 | 0.624 | 32 | 15 | 62 | 46 | 56 | 79 | 8 |
| G22 | 0.453 | 5 | 26 | 71 | 60 | 57 | 73 | 6 |
| G23 | 0.507 | 2 | 26 | 64 | 52 | 65 | 81 | 8 |
| G24 | 0.376 | 3 | 8 | 75 | 38 | 100 | 66 | 8 |
| G25 | 0.389 | 1 | 12 | 28 | 86 | 46 | 114 | 11 |
| G26 | 0.493 | 2 | 28 | 48 | 81 | 38 | 91 | 10 |
| G27 | 0.557 | 5 | 14 | 41 | 71 | 63 | 95 | 9 |
| Corrections | Participants |
|---|---|
| 0 | 223 |
| 1 | 31 |
| 2 | 9 |
| 3 | 9 |
| 4 | 11 |
| 5 | 2 |
| 6 | 5 |
| 7 | 4 |
| 8 | 4 |
| Participants | n | min | Q.25 | median | mean | Q.75 | max | sd | kurtosis | skewness |
|---|---|---|---|---|---|---|---|---|---|---|
| all | 298 | 0 | 0 | 0 | 0.738 | 0.75 | 8 | 1.685 | 9.772 | 2.686 |
| detection > 0 | 75 | 1 | 1 | 2 | 2.933 | 4.00 | 8 | 2.208 | 2.688 | 0.927 |
| Set | Condition | Detection | Gamble 5 | Gamble 9 | Gamble 10 | Gamble 21 |
|---|---|---|---|---|---|---|
| All outcome domains | ||||||
| All | both | 220 | 50 | 54 | 55 | 61 |
| All | icons | 129 | 30 | 29 | 33 | 37 |
| All | numeric | 91 | 20 | 25 | 22 | 24 |
| Common domain | ||||||
| Cost | both | 107 | 22 | 25 | 31 | 29 |
| Cost | icons | 61 | 12 | 15 | 17 | 17 |
| Cost | numeric | 46 | 10 | 10 | 14 | 12 |
| Priority domain | ||||||
| Other | both | 113 | 28 | 29 | 24 | 32 |
| Other | icons | 68 | 18 | 14 | 16 | 20 |
| Other | numeric | 45 | 10 | 15 | 8 | 12 |
| By priority domain | ||||||
| House flooding | icons | 45 | 11 | 8 | 10 | 16 |
| House flooding | numeric | 20 | 4 | 8 | 3 | 5 |
| Waterbody pollution | icons | 15 | 5 | 4 | 3 | 3 |
| Waterbody pollution | numeric | 14 | 4 | 4 | 3 | 3 |
| Road flooding | icons | 3 | 1 | 1 | 1 | 0 |
| Road flooding | numeric | 4 | 1 | 1 | 0 | 2 |
| Bathing restriction | icons | 5 | 1 | 1 | 2 | 1 |
| Bathing restriction | numeric | 7 | 1 | 2 | 2 | 2 |
## e.cond dom.2 detection gamble 5 gamble 9 gamble 10 gamble 21 cost cost 5
## 1 icon bath 0.14773 0.13636 0.13636 0.18182 0.13636 0.18182 0.18182
## 2 icon ekf 0.10556 0.08889 0.11111 0.11111 0.11111 0.12778 0.06667
## 3 icon floodh 0.11058 0.10897 0.08974 0.10256 0.14103 0.07692 0.07692
## 4 icon floodr 0.08654 0.07692 0.07692 0.11538 0.07692 0.11538 0.07692
## 5 tree bath 0.12500 0.12500 0.12500 0.16667 0.08333 0.10417 0.16667
## 6 tree ekf 0.07750 0.08000 0.09000 0.07000 0.07000 0.08500 0.08000
## 7 tree floodh 0.06419 0.04730 0.06757 0.06081 0.08108 0.06081 0.04054
## 8 tree floodr 0.08333 0.06667 0.10000 0.06667 0.10000 0.10000 0.06667
## cost 9 cost 10 cost 21 other other 5 other 9 other 10 other 21
## 1 0.18182 0.18182 0.18182 0.11364 0.09091 0.09091 0.18182 0.09091
## 2 0.13333 0.15556 0.15556 0.08333 0.11111 0.08889 0.06667 0.06667
## 3 0.07692 0.07692 0.07692 0.14423 0.14103 0.10256 0.12821 0.20513
## 4 0.07692 0.15385 0.15385 0.05769 0.07692 0.07692 0.07692 0.00000
## 5 0.08333 0.16667 0.00000 0.14583 0.08333 0.16667 0.16667 0.16667
## 6 0.10000 0.08000 0.08000 0.07000 0.08000 0.08000 0.06000 0.06000
## 7 0.02703 0.08108 0.09459 0.06757 0.05405 0.10811 0.04054 0.06757
## 8 0.13333 0.13333 0.06667 0.06667 0.06667 0.06667 0.00000 0.13333
## n min Q.25 median mean Q.75 max sd kurtosis skewness
## 298 0 0 0 0.738255 0.75 8 1.685334 9.771502 2.685596
## n min Q.25 median mean Q.75 max sd kurtosis skewness
## 298 0 0 0 0.3590604 0 4 0.9366833 9.954467 2.800953
## n min Q.25 median mean Q.75 max sd kurtosis skewness
## 298 0 0 0 0.3791946 0 4 0.9140707 9.856169 2.731148
## n min Q.25 median mean Q.75 max sd kurtosis skewness
## 298 0 0 0 0.2516779 0.75 1 0.4347071 2.309656 1.144402
## n min Q.25 median mean Q.75 max sd kurtosis skewness
## 298 0 0 0 0.1677852 0 1 0.374304 4.161613 1.778092
## n min Q.25 median mean Q.75 max sd kurtosis skewness
## 298 0 0 0 0.2013423 0 1 0.4016777 3.218768 1.489553
Questions were
Altogether
## detect1 detect2 detect3 detect4 detect5
## 0 243 236 233 198 223
## 1 55 62 65 100 75
Before suggestion (Q1-3 only)
##
## 0 1 2 3
## 207 36 19 36
After suggestion (Q4-5 only)
##
## 0 1 2
## 196 29 73
Number of detections per participants (across questions Q1-5)
##
## 0 1 2 3 4 5
## 164 44 27 20 16 27
| outcome | n | min | Q.25 | median | mean | Q.75 | max | sd | kurtosis | skewness |
|---|---|---|---|---|---|---|---|---|---|---|
| House flooding | 298 | 1 | 1 | 1 | 1.973 | 3 | 5 | 1.209 | 2.613 | 0.957 |
| Waterbody pollution | 298 | 1 | 1 | 2 | 2.326 | 3 | 5 | 1.183 | 2.372 | 0.573 |
| Road flooding | 298 | 1 | 2 | 3 | 3.034 | 4 | 5 | 1.100 | 2.288 | 0.010 |
| Cost | 298 | 1 | 2 | 3 | 3.275 | 4 | 5 | 1.227 | 2.132 | -0.284 |
| Bathing restriction | 298 | 1 | 4 | 5 | 4.393 | 5 | 5 | 0.959 | 4.405 | -1.518 |
| Cost | House flooding | Waterbody pollution | Road flooding | Bathing restriction |
|---|---|---|---|---|
| 30 | 151 | 90 | 24 | 3 |
| 51 | 65 | 91 | 74 | 17 |
| 77 | 30 | 62 | 97 | 32 |
| 87 | 43 | 40 | 74 | 54 |
| 53 | 9 | 15 | 29 | 192 |
| Bathing restriction | Waterbody pollution | House flooding | Road flooding | Sum | |
|---|---|---|---|---|---|
| icon | 11 | 45 | 78 | 13 | 147 |
| tree | 12 | 50 | 74 | 15 | 151 |
| Sum | 23 | 95 | 152 | 28 | 298 |
Note: BNT has been rescaled from 1-4 to 0-3 to be similarly scaled to CRT and GLT tasks
| Test | Condition | n | min | Q.25 | median | mean | Q.75 | max | sd | kurtosis | skewness |
|---|---|---|---|---|---|---|---|---|---|---|---|
| GLT | both | 298 | 0 | 1 | 2 | 1.517 | 2 | 2 | 0.552 | 2.198 | -0.548 |
| BNT | both | 298 | 0 | 0 | 1 | 1.164 | 2 | 3 | 1.071 | 2.070 | 0.558 |
| CRT | both | 298 | 0 | 0 | 1 | 1.275 | 2 | 3 | 1.188 | 1.549 | 0.276 |
| experience | n | min | Q.25 | median | mean | Q.75 | max | sd | kurtosis | skewness |
|---|---|---|---|---|---|---|---|---|---|---|
| House flooding | 298 | 0 | 0 | 0 | 0.128 | 0 | 1 | 0.334 | 5.988 | 2.233 |
| Waterbody pollution | 298 | 0 | 0 | 0 | 0.171 | 0 | 1 | 0.377 | 4.050 | 1.746 |
| Road flooding | 298 | 0 | 0 | 1 | 0.664 | 1 | 1 | 0.473 | 1.485 | -0.696 |
| Cost | 298 | 0 | 0 | 0 | 0.342 | 1 | 1 | 0.475 | 1.442 | 0.665 |
| Bathing | 298 | 0 | 0 | 0 | 0.265 | 1 | 1 | 0.442 | 2.133 | 1.064 |
| All events | 298 | 0 | 1 | 1 | 1.570 | 2 | 5 | 1.136 | 2.618 | 0.371 |
| Number experienced | Participants |
|---|---|
| 0 | 58 |
| 1 | 92 |
| 2 | 82 |
| 3 | 55 |
| 4 | 8 |
| 5 | 3 |
| Number experienced | Proportion of participants |
|---|---|
| 0 | 0.195 |
| 1 | 0.309 |
| 2 | 0.275 |
| 3 | 0.185 |
| 4 | 0.027 |
| 5 | 0.010 |
| House flooding | Road flooding | Cost change | Waterbody pollution | Bathing restrictions | |
|---|---|---|---|---|---|
| 0 | 260 | 100 | 196 | 247 | 219 |
| 1 | 38 | 198 | 102 | 51 | 79 |
| House flooding | Road flooding | Cost change | Waterbody pollution | Bathing restrictions | |
|---|---|---|---|---|---|
| 0 | 0.872 | 0.336 | 0.658 | 0.829 | 0.735 |
| 1 | 0.128 | 0.664 | 0.342 | 0.171 | 0.265 |
Min. 1st Qu. Median Mean 3rd Qu. Max. 9.116 24.800 30.823 33.477 40.200 88.582
| Set | n | min | Q.25 | median | mean | Q.75 | max | sd |
|---|---|---|---|---|---|---|---|---|
| By experimental condition | ||||||||
| Both | 298 | 1.456 | 7.461 | 10.483 | 11.169 | 13.869 | 44.672 | 5.722 |
| Numeric | 151 | 2.715 | 9.456 | 11.994 | 12.786 | 15.576 | 31.477 | 4.963 |
| Icons | 147 | 1.456 | 5.932 | 8.377 | 9.508 | 11.961 | 44.672 | 5.985 |
| By elicitation series | ||||||||
| 1st series | 298 | 1.323 | 8.949 | 12.345 | 13.788 | 17.225 | 80.703 | 8.087 |
| 2nd series | 298 | 0.747 | 5.292 | 8.033 | 8.551 | 10.945 | 28.895 | 4.547 |
| By outcome domain | ||||||||
| Common domain (cost) | 298 | 1.209 | 7.076 | 10.251 | 11.226 | 13.712 | 81.497 | 7.253 |
| Priority domain | 298 | 1.382 | 7.182 | 10.444 | 11.112 | 14.582 | 45.409 | 5.544 |
|
152 | 1.382 | 7.972 | 11.236 | 12.138 | 15.453 | 45.409 | 5.992 |
|
95 | 1.608 | 6.468 | 9.541 | 10.491 | 14.159 | 23.137 | 5.124 |
|
28 | 2.263 | 5.536 | 8.127 | 8.594 | 10.507 | 17.587 | 3.855 |
|
23 | 2.585 | 6.244 | 9.073 | 9.964 | 12.758 | 19.548 | 4.439 |
| Gamble | min | Q.25 | median | mean | Q.75 | max | sd |
|---|---|---|---|---|---|---|---|
| 1st trial series | |||||||
| G1 | 1.032 | 6.922 | 10.658 | 13.357 | 15.695 | 83.166 | 10.745 |
| G2 | 0.824 | 5.237 | 8.370 | 11.008 | 13.310 | 102.553 | 9.592 |
| G5 | 0.425 | 6.869 | 10.653 | 14.476 | 16.138 | 141.747 | 15.235 |
| G6 | 0.842 | 6.474 | 9.239 | 12.489 | 14.502 | 139.664 | 12.516 |
| G9 | 0.798 | 6.154 | 9.105 | 12.752 | 14.620 | 140.606 | 12.804 |
| G10 | 0.838 | 5.862 | 9.411 | 14.008 | 14.774 | 241.098 | 21.870 |
| G11 | 0.977 | 7.408 | 11.409 | 14.883 | 19.286 | 83.598 | 11.176 |
| G12 | 0.753 | 6.464 | 10.044 | 12.614 | 15.346 | 128.204 | 11.491 |
| G13 | 0.660 | 6.212 | 10.016 | 13.485 | 15.311 | 109.161 | 13.468 |
| G14 | 0.856 | 6.774 | 10.610 | 15.216 | 19.025 | 137.704 | 15.091 |
| G15 | 0.605 | 6.256 | 10.777 | 15.567 | 16.806 | 443.175 | 31.104 |
| G17 | 0.886 | 6.033 | 9.740 | 12.758 | 15.605 | 176.361 | 13.567 |
| G20 | 0.600 | 6.873 | 10.252 | 22.947 | 16.298 | 2916.051 | 168.542 |
| G21 | 0.604 | 7.114 | 10.414 | 13.020 | 15.753 | 101.791 | 10.694 |
| G22 | 0.854 | 7.045 | 9.914 | 13.123 | 14.223 | 159.101 | 15.139 |
| G23 | 0.698 | 6.701 | 10.197 | 15.148 | 15.618 | 732.210 | 43.084 |
| G24 | 0.821 | 5.902 | 8.310 | 10.904 | 12.680 | 87.655 | 9.293 |
| G25 | 0.620 | 6.319 | 10.071 | 12.876 | 16.631 | 85.563 | 10.522 |
| G26 | 1.124 | 7.527 | 11.088 | 13.801 | 16.061 | 103.864 | 12.186 |
| G27 | 0.946 | 5.666 | 8.735 | 12.195 | 14.533 | 92.790 | 11.023 |
| 2nd trial series | |||||||
| G1 | 0.323 | 4.068 | 6.621 | 9.935 | 10.175 | 548.970 | 32.060 |
| G2 | 0.337 | 3.768 | 6.442 | 7.831 | 9.605 | 133.224 | 9.026 |
| G5 | 0.086 | 4.250 | 7.241 | 9.491 | 11.916 | 156.500 | 11.440 |
| G6 | 0.007 | 4.065 | 6.672 | 8.794 | 10.490 | 92.067 | 8.760 |
| G9 | 0.403 | 4.118 | 6.269 | 7.860 | 9.936 | 71.703 | 6.550 |
| G10 | 0.313 | 3.971 | 6.249 | 7.986 | 10.204 | 68.087 | 7.275 |
| G11 | 0.476 | 4.193 | 6.762 | 8.345 | 11.206 | 37.427 | 5.965 |
| G12 | 0.334 | 4.031 | 6.708 | 9.020 | 11.005 | 233.255 | 14.568 |
| G13 | 0.164 | 3.807 | 6.888 | 8.539 | 10.665 | 53.500 | 7.414 |
| G14 | 0.388 | 4.528 | 7.020 | 8.863 | 10.927 | 153.956 | 10.244 |
| G15 | 0.445 | 4.562 | 7.012 | 8.457 | 10.637 | 39.111 | 5.786 |
| G17 | 0.405 | 4.307 | 6.871 | 8.076 | 10.450 | 40.721 | 5.676 |
| G20 | 0.435 | 4.253 | 7.112 | 9.291 | 10.230 | 168.281 | 12.899 |
| G21 | 0.636 | 4.151 | 6.294 | 8.047 | 9.719 | 64.012 | 7.060 |
| G22 | 0.159 | 4.580 | 7.302 | 10.626 | 10.737 | 601.318 | 35.084 |
| G23 | 0.652 | 4.022 | 6.184 | 9.014 | 9.791 | 290.168 | 18.031 |
| G24 | 0.399 | 4.220 | 6.471 | 7.789 | 9.363 | 138.399 | 9.000 |
| G25 | 0.315 | 4.160 | 6.766 | 8.205 | 10.189 | 44.584 | 6.299 |
| G26 | 0.667 | 4.375 | 6.787 | 8.745 | 10.296 | 198.549 | 12.339 |
| G27 | 0.289 | 3.996 | 6.141 | 7.513 | 9.380 | 92.308 | 6.899 |
| Gamble | min | Q.25 | median | mean | Q.75 | max | sd |
|---|---|---|---|---|---|---|---|
| 1st trial series | |||||||
| G1 | 0.660 | 7.678 | 11.206 | 14.478 | 17.903 | 88.339 | 12.173 |
| G2 | 0.351 | 5.391 | 9.018 | 12.254 | 15.257 | 75.581 | 11.004 |
| G5 | 0.607 | 6.600 | 10.032 | 12.443 | 14.447 | 80.811 | 10.528 |
| G6 | 0.441 | 6.020 | 8.811 | 11.722 | 13.285 | 136.195 | 11.686 |
| G9 | 0.256 | 7.353 | 11.961 | 15.143 | 17.906 | 224.850 | 17.372 |
| G10 | 0.722 | 6.267 | 9.918 | 12.488 | 16.133 | 52.948 | 9.603 |
| G11 | 0.240 | 7.774 | 11.334 | 16.579 | 20.005 | 164.931 | 17.452 |
| G12 | 0.729 | 6.315 | 10.092 | 13.727 | 17.392 | 72.798 | 11.797 |
| G13 | 0.391 | 6.218 | 9.899 | 13.747 | 15.844 | 216.185 | 16.565 |
| G14 | 0.071 | 8.222 | 12.316 | 16.459 | 20.012 | 138.890 | 14.757 |
| G15 | 0.469 | 6.884 | 10.736 | 13.352 | 16.107 | 96.333 | 11.450 |
| G17 | 0.519 | 6.266 | 9.372 | 13.226 | 16.179 | 134.231 | 13.053 |
| G20 | 0.423 | 7.341 | 11.905 | 14.750 | 17.087 | 192.093 | 14.279 |
| G21 | 0.413 | 6.245 | 10.474 | 13.442 | 16.321 | 73.848 | 10.989 |
| G22 | 0.468 | 6.650 | 10.503 | 12.833 | 14.729 | 125.896 | 11.753 |
| G23 | 0.882 | 6.384 | 10.466 | 12.962 | 16.640 | 84.390 | 10.019 |
| G24 | 0.276 | 5.497 | 8.531 | 10.967 | 13.988 | 106.745 | 9.527 |
| G25 | 0.661 | 6.128 | 9.977 | 12.670 | 16.573 | 94.820 | 10.146 |
| G26 | 0.130 | 8.229 | 12.674 | 16.529 | 20.867 | 103.994 | 13.057 |
| G27 | 0.747 | 6.218 | 10.300 | 15.107 | 17.498 | 225.981 | 18.327 |
| 2nd trial series | |||||||
| G1 | 0.423 | 3.997 | 6.988 | 8.380 | 10.747 | 51.065 | 6.488 |
| G2 | 0.122 | 3.781 | 6.418 | 7.723 | 9.389 | 105.185 | 7.806 |
| G5 | 0.096 | 4.187 | 7.021 | 8.307 | 10.182 | 152.068 | 9.766 |
| G6 | 0.546 | 3.950 | 6.603 | 7.969 | 9.501 | 62.156 | 7.086 |
| G9 | 0.240 | 4.264 | 6.936 | 9.057 | 10.123 | 244.508 | 14.893 |
| G10 | 0.413 | 3.850 | 6.716 | 8.274 | 10.181 | 49.980 | 7.003 |
| G11 | 0.385 | 3.973 | 7.214 | 8.647 | 11.611 | 45.751 | 6.411 |
| G12 | 0.358 | 3.532 | 6.896 | 8.774 | 10.530 | 145.785 | 11.831 |
| G13 | 0.323 | 3.597 | 6.451 | 8.152 | 11.127 | 54.441 | 6.528 |
| G14 | 0.560 | 4.512 | 7.362 | 9.423 | 11.280 | 110.241 | 9.089 |
| G15 | 0.201 | 4.315 | 7.023 | 8.037 | 10.332 | 46.479 | 6.013 |
| G17 | 0.416 | 4.077 | 6.749 | 9.124 | 10.149 | 293.728 | 17.856 |
| G20 | 0.461 | 4.341 | 6.906 | 8.792 | 10.886 | 83.217 | 7.800 |
| G21 | 0.509 | 3.924 | 7.170 | 8.465 | 11.297 | 39.720 | 6.561 |
| G22 | 0.311 | 4.703 | 6.726 | 8.692 | 10.198 | 143.836 | 9.822 |
| G23 | 0.091 | 3.812 | 6.554 | 8.906 | 11.023 | 269.537 | 16.648 |
| G24 | 0.102 | 3.986 | 6.658 | 7.756 | 9.753 | 39.825 | 6.102 |
| G25 | 0.221 | 3.738 | 6.890 | 8.380 | 11.178 | 69.079 | 7.178 |
| G26 | 0.906 | 4.536 | 6.737 | 8.665 | 10.682 | 89.895 | 7.833 |
| G27 | 0.415 | 3.782 | 6.527 | 8.086 | 10.421 | 56.136 | 6.330 |
Consistency of choices regardless the implied (or induced) preference can also be measured using
On Pearson’s Phi
| SMC | n | min | Q.25 | median | mean | Q.75 | max | sd | kurtosis | skewness |
|---|---|---|---|---|---|---|---|---|---|---|
| All gambles | ||||||||||
| both | 298 | 0.300 | 0.575 | 0.650 | 0.651 | 0.725 | 0.950 | 0.121 | 2.870 | -0.026 |
| trees | 151 | 0.300 | 0.575 | 0.625 | 0.636 | 0.700 | 0.900 | 0.115 | 3.206 | -0.176 |
| icons | 147 | 0.350 | 0.575 | 0.675 | 0.666 | 0.750 | 0.950 | 0.125 | 2.501 | 0.034 |
| By manipulation | ||||||||||
| M trials | 298 | 0.125 | 0.500 | 0.625 | 0.636 | 0.750 | 1.000 | 0.191 | 2.762 | -0.359 |
| NM trials | 298 | 0.250 | 0.562 | 0.656 | 0.655 | 0.750 | 0.969 | 0.127 | 2.984 | -0.083 |
| By outcome domain | ||||||||||
| Cost domain | 298 | 0.150 | 0.550 | 0.700 | 0.666 | 0.750 | 1.000 | 0.154 | 3.203 | -0.457 |
| Priority domain | 298 | 0.200 | 0.550 | 0.625 | 0.636 | 0.750 | 0.950 | 0.153 | 2.605 | -0.054 |
| – House flooding | 152 | 0.250 | 0.538 | 0.600 | 0.627 | 0.750 | 0.950 | 0.149 | 2.479 | -0.177 |
| – Waterbody pollution | 95 | 0.200 | 0.550 | 0.700 | 0.666 | 0.800 | 0.950 | 0.162 | 2.504 | -0.083 |
| – Road flooding | 28 | 0.250 | 0.500 | 0.550 | 0.559 | 0.625 | 0.800 | 0.131 | 2.744 | -0.224 |
| – Bathing restictions | 23 | 0.500 | 0.550 | 0.650 | 0.672 | 0.750 | 0.950 | 0.131 | 2.394 | 0.622 |
| By manipulation and outcome domain | ||||||||||
| M cost domain | 298 | 0.000 | 0.500 | 0.750 | 0.654 | 0.750 | 1.000 | 0.251 | 2.541 | -0.375 |
| M priority domain | 298 | 0.200 | 0.550 | 0.625 | 0.636 | 0.750 | 0.950 | 0.153 | 2.605 | -0.054 |
| NM cost domain | 298 | 0.125 | 0.562 | 0.688 | 0.669 | 0.812 | 1.000 | 0.164 | 3.186 | -0.451 |
| NM priority domain | 298 | 0.188 | 0.562 | 0.625 | 0.641 | 0.750 | 1.000 | 0.162 | 2.587 | -0.083 |
| Phi | n | min | Q.25 | median | mean | Q.75 | max | sd | kurtosis | skewness |
|---|---|---|---|---|---|---|---|---|---|---|
| All gambles | ||||||||||
| all | 298 | -0.402 | 0.133 | 0.296 | 0.296 | 0.470 | 0.899 | 0.245 | 2.853 | -0.025 |
| trees | 151 | -0.402 | 0.100 | 0.257 | 0.265 | 0.404 | 0.814 | 0.233 | 3.150 | -0.141 |
| icons | 147 | -0.330 | 0.151 | 0.323 | 0.327 | 0.496 | 0.899 | 0.254 | 2.536 | 0.007 |
| By manipulation | ||||||||||
| M trials | 298 | -0.775 | -0.067 | 0.258 | 0.251 | 0.500 | 1.000 | 0.413 | 2.397 | -0.352 |
| NM trials | 298 | -0.500 | 0.148 | 0.284 | 0.305 | 0.473 | 0.939 | 0.256 | 2.969 | -0.079 |
| By outcome domain | ||||||||||
| cost domain | 298 | -0.698 | 0.123 | 0.328 | 0.329 | 0.533 | 1.000 | 0.314 | 3.135 | -0.464 |
| other domain | 298 | -0.612 | 0.051 | 0.246 | 0.267 | 0.492 | 0.905 | 0.310 | 2.572 | -0.028 |
| – floodh | 152 | -0.471 | 0.043 | 0.250 | 0.249 | 0.492 | 0.903 | 0.298 | 2.439 | -0.129 |
| – ekf | 95 | -0.612 | 0.092 | 0.341 | 0.331 | 0.589 | 0.905 | 0.330 | 2.482 | -0.108 |
| – floodr | 28 | -0.503 | -0.025 | 0.086 | 0.099 | 0.248 | 0.601 | 0.267 | 2.776 | -0.255 |
| – bath | 23 | -0.042 | 0.110 | 0.218 | 0.320 | 0.481 | 0.899 | 0.274 | 2.402 | 0.648 |
| By manipulation and outcome domain | ||||||||||
| NM cost domain | 298 | -0.750 | 0.129 | 0.358 | 0.337 | 0.618 | 1.000 | 0.332 | 3.111 | -0.454 |
| NM other domain | 298 | -0.630 | 0.073 | 0.258 | 0.279 | 0.520 | 1.000 | 0.328 | 2.554 | -0.099 |
## [1] 0.2871537
## [1] 0.2971246
bath ekf floodh floodr
0 7 7 12 5 2 4 15 36 6 4 4 14 34 1 6 5 19 17 6 8 1 9 18 4 10 2 13 10 3 12 0 7 11 2 14 0 6 6 0 16 0 3 4 0 18 0 0 2 1 20 0 1 0 0 22 0 1 2 0
Figure. Risk attitude by experimental condition
Figure. Risk attitude change by experimental condition
Figure. Risk attitude stability by experimental condition
Figure. Risk attitude difference on easy gambles by experimental condition
Figure. Risk attitude difference on easy gambles by experimental condition
Figure. Risk attitude difference on difficult gambles by experimental condition
Figure. Response time by experimental condition in first trial series
Figure. Response time by experimental condition in 2nd trial series
Check for correlations and relationships between variables
Figure. Box plot risk.diff.abs ~ bnt,glt,bnt,crt, experience
Figure. Number of choice concurrent detections by experimental condition
Figure. CBMD by gamble difficulty
Figuure. CBMD on easy gambles
Figure. CBMD on difficult gambles
Figure. Box plot cbd.binary ~ cognitive abilities and experience
Figure. Box plot cbd.full ~ cognitive abilities and experience
Hypothesis testing with cor.test(). using Kendall tau-b as more tractable than Spearman rho when ties are present, see Gilpin (1993) Educational and Psych. Measurement, 53(1):87-92
Chi2 (one-sided, independent) test with H_0 that cbd and risk preference changes are independent of each other
Wilcoxon (one-sided, independent) rank sum test (= Mann-Whitney U test) with H_0 that mean change is lower for participants who corrected manipulation
table(risk.m.detected\(detected, abs(risk.m.detected\)difference), dnn = c(“detected”, “change”))
Wilcoxon (one-sided, independent) rank sum test (= Mann-Whitney U test) with H_0 that mean risk aversion score is lower for participants in the first trial series
table(risk.m.detected\(detected, abs(risk.m.detected\)difference), dnn = c(“detected”, “change”))
Kendall tau-b rank correlation test (independent) test with H_0 that risk attidude score change decreases with detection:
0 1
0 1375 789 1 150 70
0 1
0 6237 3299
** Main tests** #### (A) Test H0 that CBMD is not greater in domains that are more important (i.e. -rank) - across domains
## D ND
## cost 107 248
## floodh 65 117
## floodr 7 22
## bath 12 19
## ekf 29 80
Post-hoc Pairwise Quade Test
Additional, exploratory tests #### (1) Testing for H0 that CBMD is the same for both domains, using Wilcoxon signed rank test
CRT
GLT
BNT
Risk attitude
Risk attitude stability
CBMD
Gambles practice
CRT
Wilcoxon (one-sided, independent) rank sum test (= Mann-Whitney U test) with H_0 that CBMD is higher in icon condition
Wilcoxon (one-sided, independent) rank sum test (= Mann-Whitney U test) with H_0 that CBMD is higher in icon condition for those who corrected sth
Wilcoxon (one-sided, independent) rank sum test (= Mann-Whitney U test) with H_0 that CBMD (binary) is higher in icon condition for those who corrected sth
For exploration: Kolmogorov-Smirnov (one-sided, independent) test with H_0 that cdf distribution of CBMD is larger in icon condition
Wilcoxon (one-sided, independent) rank sum test (= Mann-Whitney U test) with H_0 that risk attitude stability is higher in icon condition
Wilcoxon (one-sided, independent) rank sum test with H_0 that risk attitude stability is higher in icon condition for those who corrected sth
Wilcoxon (two-sided, independent) rank sum test (= Mann-Whitney U test) with H_0 that risk attitude is same in icon condition
Wilcoxon (one-sided, paired) rank sum test (= Mann-Whitney U test) with H_0 that concurrent detection is not higher for easy gambles
Wilcoxon (one-sided, paired) rank sum test with H_0 that concurrent detection is not higher for easy gambles for those who corrected sth
Quade test to understand whether there is a difference among gambles G5-G21
## icon tree
## G5 30 20
## G9 29 25
## G10 33 22
## G21 37 24
Post-hoc Pairwise Quade Test
Wilcoxon (one-sided, independent rank sum test with H_0 that concurrent detection is not higher for easy gambles in icon condition
Wilcoxon (one-sided, independent) rank sum test with H_0 that concurrent detection is not higher difficulteasy gambles in icon condition
Wilcoxon (one-sided, paired) rank sum test (= Mann-Whitney U test) with H_0 that risk attitude difference is not lower for easy gambles
Quade test to understand whether there is a difference in changes among gambles G5-G21
## icon tree
## G5 73 80
## G9 91 111
## G10 82 93
## G21 85 104
Post-hoc Pairwise Quade Test
Plot descriptive stats side by side| G5 | G10 | G9 | G21 | G5 | G10 | G9 | G21 | |
|---|---|---|---|---|---|---|---|---|
| icon | 30 | 33 | 29 | 37 | 73 | 82 | 91 | 85 |
| tree | 20 | 22 | 25 | 24 | 80 | 93 | 111 | 104 |
across domains and treatment conditions
(a.) preferences about the gamble are weakly held (close to indifferent) * I.e. how long did person take on this gamble compared to others? * Or use indifference statements (b.+c.) cognitive reasoning, risk numeracy, and graph literacy scores are low (d.) experience or familiarity with domain are low (e.) perceived importance of domain is low
| change | cbd | rpe_time | icon | crt | bnt | glt | delta.ev.ref | delta.p | g5 | g9 | g10 | g21 | d.cost | d.bath | d.ekf | d.floodh | d.floodr | experience | rank | age | female | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| change | 1.00 | -0.03 | -0.03 | -0.03 | 0.00 | -0.06 | 0.01 | 0.04 | 0.01 | -0.04 | -0.01 | 0.03 | 0.02 | -0.03 | -0.02 | -0.02 | 0.06 | 0.01 | 0.02 | -0.01 | 0.02 | 0.02 |
| d.floodh | 0.06 | 0.03 | 0.09 | 0.02 | 0.07 | 0.04 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.59 | -0.12 | -0.25 | 1.00 | -0.13 | -0.21 | 0.08 | 0.10 | -0.02 |
| delta.ev.ref | 0.04 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.45 | -0.77 | -0.26 | 0.26 | 0.77 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| g10 | 0.03 | 0.00 | -0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.26 | -0.58 | -0.33 | -0.33 | 1.00 | -0.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| g21 | 0.02 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.77 | 0.58 | -0.33 | -0.33 | -0.33 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| experience | 0.02 | -0.03 | -0.05 | 0.00 | -0.11 | -0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.03 | -0.09 | -0.21 | 0.23 | 1.00 | 0.05 | 0.02 | 0.04 |
| age | 0.02 | -0.13 | 0.14 | 0.00 | 0.12 | -0.11 | -0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.10 | -0.06 | 0.10 | -0.02 | 0.02 | 0.16 | 1.00 | 0.02 |
| female | 0.02 | -0.05 | -0.03 | -0.02 | -0.22 | -0.11 | -0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.02 | -0.02 | -0.02 | 0.04 | -0.04 | 0.02 | 1.00 |
| glt | 0.01 | 0.04 | 0.02 | -0.01 | 0.28 | 0.13 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.06 | -0.03 | 0.03 | 0.05 | 0.00 | -0.08 | -0.03 | -0.05 |
| delta.p | 0.01 | 0.01 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.45 | 1.00 | -0.58 | 0.58 | -0.58 | 0.58 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| d.floodr | 0.01 | -0.02 | -0.05 | -0.01 | -0.06 | -0.05 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.22 | -0.04 | -0.10 | -0.13 | 1.00 | 0.23 | 0.01 | -0.02 | -0.02 |
| crt | 0.00 | 0.08 | 0.11 | 0.00 | 1.00 | 0.45 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.05 | -0.02 | 0.07 | -0.06 | -0.11 | 0.09 | 0.12 | -0.22 |
| g9 | -0.01 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | -0.26 | 0.58 | -0.33 | 1.00 | -0.33 | -0.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| rank | -0.01 | 0.03 | 0.08 | 0.02 | 0.09 | 0.17 | -0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.09 | -0.05 | 0.08 | 0.01 | 0.05 | 1.00 | 0.16 | -0.04 |
| d.bath | -0.02 | 0.03 | -0.03 | -0.01 | -0.05 | 0.01 | -0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.20 | 1.00 | -0.09 | -0.12 | -0.04 | 0.03 | -0.09 | -0.10 | 0.03 |
| d.ekf | -0.02 | -0.02 | -0.04 | -0.02 | -0.02 | -0.02 | -0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.44 | -0.09 | 1.00 | -0.25 | -0.10 | -0.09 | -0.05 | -0.06 | 0.02 |
| cbd | -0.03 | 1.00 | 0.10 | 0.06 | 0.08 | 0.16 | 0.04 | 0.02 | 0.01 | -0.02 | 0.00 | 0.00 | 0.02 | -0.01 | 0.03 | -0.02 | 0.03 | -0.02 | -0.03 | 0.03 | -0.13 | -0.05 |
| rpe_time | -0.03 | 0.10 | 1.00 | -0.30 | 0.11 | 0.06 | 0.02 | 0.00 | 0.03 | 0.00 | 0.02 | -0.04 | 0.02 | -0.02 | -0.03 | -0.04 | 0.09 | -0.05 | -0.05 | 0.08 | 0.14 | -0.03 |
| icon | -0.03 | 0.06 | -0.30 | 1.00 | 0.00 | 0.06 | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | -0.02 | 0.02 | -0.01 | 0.00 | 0.02 | 0.00 | -0.02 |
| d.cost | -0.03 | -0.01 | -0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | -0.20 | -0.44 | -0.59 | -0.22 | 0.14 | 0.00 | 0.00 | 0.00 |
| g5 | -0.04 | -0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.77 | -0.58 | 1.00 | -0.33 | -0.33 | -0.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| bnt | -0.06 | 0.16 | 0.06 | 0.06 | 0.45 | 1.00 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | -0.02 | 0.04 | -0.05 | -0.06 | 0.17 | -0.11 | -0.11 |
Cross-correlations of DVs and IVs. Only significant correlations (p<.25) are shown
Using mixed effect logistic regression with intercept and slope by individual, applying selection rules in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633005/
Starting with full model
Note that interaction rank:bnt was ignored as no reasonable explanation apparent and also hardly any effect on model predictive capacity, i.e. assuming it as spurious relationship that can be discarded.
candidates for removal are (p <.1): glt, crt, bnt, experience, rank, female
test for confounders (if removal leads to change in another predictor > 15-20%)
remove (indiff) female, rank, glt
interaction effect of d.bath:experience only adds inf error, but no change in odds, kept interactions still
Can CRT be deleted without issues?
adding back variables not considered earlier: delta.ev.ref, delta.p, g5, g9, g10, g21, d.cost, d.floodr and keep if p<.1
Which model improves upon earlier or not?
Figure. Residual diagnostics for model cbd.i2
$uniformity
Asymptotic one-sample Kolmogorov-Smirnov test
data: simulationOutput$scaledResiduals D = 0.017739, p-value = 0.4412 alternative hypothesis: two-sided
$dispersion
DHARMa nonparametric dispersion test via sd of residuals fitted vs.
simulated
data: simulationOutput dispersion = 0.98767, p-value = 0.992 alternative hypothesis: two.sided
$outliers
DHARMa outlier test based on exact binomial test with approximate
expectations
data: simulationOutput outliers at both margin(s) = 12, observations = 2384, p-value = 0.1321 alternative hypothesis: true probability of success is not equal to 0.007968127 95 percent confidence interval: 0.002603536 0.008776087 sample estimates: frequency of outliers (expected: 0.00796812749003984 ) 0.005033557
$uniformity
Asymptotic one-sample Kolmogorov-Smirnov test
data: simulationOutput$scaledResiduals D = 0.017739, p-value = 0.4412 alternative hypothesis: two-sided
$dispersion
DHARMa nonparametric dispersion test via sd of residuals fitted vs.
simulated
data: simulationOutput dispersion = 0.98767, p-value = 0.992 alternative hypothesis: two.sided
$outliers
DHARMa outlier test based on exact binomial test with approximate
expectations
data: simulationOutput outliers at both margin(s) = 12, observations = 2384, p-value = 0.1321 alternative hypothesis: true probability of success is not equal to 0.007968127 95 percent confidence interval: 0.002603536 0.008776087 sample estimates: frequency of outliers (expected: 0.00796812749003984 ) 0.005033557
| Mixed effects logit model (all vars) | Mixed effects logit model (final) | |||||||
|---|---|---|---|---|---|---|---|---|
| Predictors | Odds Ratios | std. Error | CI | p | Odds Ratios | std. Error | CI | p |
| Intercept | 0.00 | 0.00 | 0.00 – 0.09 | 0.001 | 0.00 | 0.00 | 0.00 – 0.03 | <0.001 |
| Choice latency [log] | 1.80 | 0.33 | 1.26 – 2.57 | 0.001 | 1.80 | 0.33 | 1.26 – 2.58 | 0.001 |
| Icon condition | 2.70 | 1.55 | 0.88 – 8.33 | 0.083 | 2.65 | 1.52 | 0.86 – 8.16 | 0.089 |
| CRT score | 1.12 | 0.87 | 0.24 – 5.13 | 0.884 | ||||
| GLT score | 0.81 | 0.63 | 0.17 – 3.75 | 0.786 | ||||
| BNT score | 2.02 | 1.00 | 0.77 – 5.33 | 0.153 | 1.86 | 0.49 | 1.11 – 3.13 | 0.018 |
| D: Bathing restrictions | 1.00 | 0.63 | 0.29 – 3.41 | 0.999 | 0.98 | 0.61 | 0.29 – 3.34 | 0.975 |
| D: Waterbody pollution | 0.26 | 0.14 | 0.09 – 0.73 | 0.011 | 0.26 | 0.14 | 0.09 – 0.73 | 0.010 |
| D: House flooding | 1.97 | 0.59 | 1.10 – 3.54 | 0.023 | 1.99 | 0.60 | 1.11 – 3.58 | 0.022 |
| Experience | 0.73 | 0.28 | 0.35 – 1.55 | 0.415 | 0.73 | 0.28 | 0.35 – 1.54 | 0.406 |
| Domain rank | 1.16 | 0.28 | 0.72 – 1.87 | 0.548 | ||||
| Age | 0.92 | 0.02 | 0.88 – 0.97 | 0.001 | 0.93 | 0.02 | 0.89 – 0.97 | 0.001 |
| Female | 0.99 | 0.58 | 0.31 – 3.11 | 0.985 | ||||
| CRT:GLT | 1.12 | 0.50 | 0.47 – 2.68 | 0.792 | ||||
| CRT:BNT | 0.89 | 0.22 | 0.55 – 1.43 | 0.627 | ||||
| D:E Waterbody pollution | 4.92 | 4.66 | 0.77 – 31.51 | 0.092 | 5.03 | 4.78 | 0.78 – 32.33 | 0.089 |
| D:E House flooding | 1.68 | 1.43 | 0.32 – 8.92 | 0.542 | 1.65 | 1.39 | 0.31 – 8.64 | 0.556 |
| Random Effects | ||||||||
| σ2 | 3.29 | 3.29 | ||||||
| τ00 | 15.74 participant.id | 16.20 participant.id | ||||||
| ICC | 0.83 | 0.83 | ||||||
| N | 298 participant.id | 298 participant.id | ||||||
| Observations | 2384 | 2384 | ||||||
| Marginal R2 / Conditional R2 | 0.111 / 0.846 | 0.103 / 0.849 | ||||||
| Deviance | 569.524 | 568.860 | ||||||
| AIC | 980.536 | 969.532 | ||||||
| AICc | 980.825 | 969.664 | ||||||
| log-Likelihood | -472.268 | -472.766 | ||||||
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## NOTE: Results may be misleading due to involvement in interactions
## NOTE: Results may be misleading due to involvement in interactions
## Data were 'prettified'. Consider using `terms="age [all]"` to get smooth
## plots.
COST: McNemar’s (one-sided, paired) ^2 test with H_0 that concurrent detection is not higher for individuals who have experienced outcome
EKF: McNemar’s (one-sided, paired) ^2 test with H_0 that concurrent detection is not higher for individuals who have experienced outcome
FLOOD-H: McNemar’s (one-sided, paired) ^2 test with H_0 that concurrent detection is not higher for individuals who have experienced outcome
FLOOD-R: McNemar’s (one-sided, paired) ^2 test with H_0 that concurrent detection is not higher for individuals who have experienced outcome
BATH: McNemar’s (one-sided, paired) ^2 test with H_0 that concurrent detection is not higher for individuals who have experienced outcome
(a.) preferences about the gamble are weakly held (close to indifferent) * I.e. how long did person take on this gamble compared to others? * Or use indifference statements (b.+c.) cognitive reasoning, risk numeracy, and graph literacy scores are low (d.) experience or familiarity with domain are low (e.) perceived importance of domain is low #### (a.) preferences about the gamble are weakly held (close to indifferent) + I.e. how long did person take on this gamble compared to others? + Or use indifference statements
| change | cbd | rpe_time | icon | crt | bnt | glt | delta.ev.ref | delta.p | g5 | g9 | g10 | g21 | d.cost | d.bath | d.ekf | d.floodh | d.floodr | experience | rank | age | female | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| change | 1.00 | -0.03 | -0.03 | -0.03 | 0.00 | -0.06 | 0.01 | 0.04 | 0.01 | -0.04 | -0.01 | 0.03 | 0.02 | -0.03 | -0.02 | -0.02 | 0.06 | 0.01 | 0.02 | -0.01 | 0.02 | 0.02 |
| d.floodh | 0.06 | 0.03 | 0.09 | 0.02 | 0.07 | 0.04 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.59 | -0.12 | -0.25 | 1.00 | -0.13 | -0.21 | 0.08 | 0.10 | -0.02 |
| delta.ev.ref | 0.04 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.45 | -0.77 | -0.26 | 0.26 | 0.77 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| g10 | 0.03 | 0.00 | -0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.26 | -0.58 | -0.33 | -0.33 | 1.00 | -0.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| g21 | 0.02 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.77 | 0.58 | -0.33 | -0.33 | -0.33 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| experience | 0.02 | -0.03 | -0.05 | 0.00 | -0.11 | -0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.03 | -0.09 | -0.21 | 0.23 | 1.00 | 0.05 | 0.02 | 0.04 |
| age | 0.02 | -0.13 | 0.14 | 0.00 | 0.12 | -0.11 | -0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.10 | -0.06 | 0.10 | -0.02 | 0.02 | 0.16 | 1.00 | 0.02 |
| female | 0.02 | -0.05 | -0.03 | -0.02 | -0.22 | -0.11 | -0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.02 | -0.02 | -0.02 | 0.04 | -0.04 | 0.02 | 1.00 |
| glt | 0.01 | 0.04 | 0.02 | -0.01 | 0.28 | 0.13 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.06 | -0.03 | 0.03 | 0.05 | 0.00 | -0.08 | -0.03 | -0.05 |
| delta.p | 0.01 | 0.01 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.45 | 1.00 | -0.58 | 0.58 | -0.58 | 0.58 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| d.floodr | 0.01 | -0.02 | -0.05 | -0.01 | -0.06 | -0.05 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.22 | -0.04 | -0.10 | -0.13 | 1.00 | 0.23 | 0.01 | -0.02 | -0.02 |
| crt | 0.00 | 0.08 | 0.11 | 0.00 | 1.00 | 0.45 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.05 | -0.02 | 0.07 | -0.06 | -0.11 | 0.09 | 0.12 | -0.22 |
| g9 | -0.01 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | -0.26 | 0.58 | -0.33 | 1.00 | -0.33 | -0.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| rank | -0.01 | 0.03 | 0.08 | 0.02 | 0.09 | 0.17 | -0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.09 | -0.05 | 0.08 | 0.01 | 0.05 | 1.00 | 0.16 | -0.04 |
| d.bath | -0.02 | 0.03 | -0.03 | -0.01 | -0.05 | 0.01 | -0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.20 | 1.00 | -0.09 | -0.12 | -0.04 | 0.03 | -0.09 | -0.10 | 0.03 |
| d.ekf | -0.02 | -0.02 | -0.04 | -0.02 | -0.02 | -0.02 | -0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.44 | -0.09 | 1.00 | -0.25 | -0.10 | -0.09 | -0.05 | -0.06 | 0.02 |
| cbd | -0.03 | 1.00 | 0.10 | 0.06 | 0.08 | 0.16 | 0.04 | 0.02 | 0.01 | -0.02 | 0.00 | 0.00 | 0.02 | -0.01 | 0.03 | -0.02 | 0.03 | -0.02 | -0.03 | 0.03 | -0.13 | -0.05 |
| rpe_time | -0.03 | 0.10 | 1.00 | -0.30 | 0.11 | 0.06 | 0.02 | 0.00 | 0.03 | 0.00 | 0.02 | -0.04 | 0.02 | -0.02 | -0.03 | -0.04 | 0.09 | -0.05 | -0.05 | 0.08 | 0.14 | -0.03 |
| icon | -0.03 | 0.06 | -0.30 | 1.00 | 0.00 | 0.06 | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | -0.02 | 0.02 | -0.01 | 0.00 | 0.02 | 0.00 | -0.02 |
| d.cost | -0.03 | -0.01 | -0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | -0.20 | -0.44 | -0.59 | -0.22 | 0.14 | 0.00 | 0.00 | 0.00 |
| g5 | -0.04 | -0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.77 | -0.58 | 1.00 | -0.33 | -0.33 | -0.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| bnt | -0.06 | 0.16 | 0.06 | 0.06 | 0.45 | 1.00 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | -0.02 | 0.04 | -0.05 | -0.06 | 0.17 | -0.11 | -0.11 |
## Warning in corrplot(corr, type = "upper", method = upper, diag = TRUE, tl.pos =
## tl.pos, : p.mat and corr may be not paired, their rownames and colnames are not
## totally same!
## Warning in corrplot(corr, add = TRUE, type = "lower", method = lower, diag =
## (diag == : p.mat and corr may be not paired, their rownames and colnames are
## not totally same!
Cross-correlations of risk attitude change with explantory variables. Only significant correlations (p<.25) are shown
Using mixed effect logistic regression with intercept and slope by individual, applying selection rules in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633005/
Starting with full model
candidates for removal are (p <.1): cbd, log(rpe_time), icon, delta.ev.ref, d.cost, d.ekf, experience
test for confounders (if removal leads to change in another predictor > 15-20%)
remove cbd, delta.ev.ref
Relevant if adding G5 and G10 or delta.ev.ref?
adding unconsidered variables and keep if p<.15: female, age, delta.p, g9, g21, d.bath, d.floodr, crt, glt, expfloodr, expbathing, rank
any irrelevant interactions e.g. bnt:cbd, icon:log(rpe_time)
tab_model(chg.logit, chg.logit.2, chg.logit.3)
Which model improves upon earlier or not?
Figure. Residual diagnostics
$uniformity
Asymptotic one-sample Kolmogorov-Smirnov test
data: simulationOutput$scaledResiduals D = 0.015744, p-value = 0.5957 alternative hypothesis: two-sided
$dispersion
DHARMa nonparametric dispersion test via sd of residuals fitted vs.
simulated
data: simulationOutput dispersion = 0.9999, p-value = 0.968 alternative hypothesis: two.sided
$outliers
DHARMa outlier test based on exact binomial test with approximate
expectations
data: simulationOutput outliers at both margin(s) = 18, observations = 2384, p-value = 0.9085 alternative hypothesis: true probability of success is not equal to 0.007968127 95 percent confidence interval: 0.004480767 0.011906630 sample estimates: frequency of outliers (expected: 0.00796812749003984 ) 0.007550336
$uniformity
Asymptotic one-sample Kolmogorov-Smirnov test
data: simulationOutput$scaledResiduals D = 0.015744, p-value = 0.5957 alternative hypothesis: two-sided
$dispersion
DHARMa nonparametric dispersion test via sd of residuals fitted vs.
simulated
data: simulationOutput dispersion = 0.9999, p-value = 0.968 alternative hypothesis: two.sided
$outliers
DHARMa outlier test based on exact binomial test with approximate
expectations
data: simulationOutput outliers at both margin(s) = 18, observations = 2384, p-value = 0.9085 alternative hypothesis: true probability of success is not equal to 0.007968127 95 percent confidence interval: 0.004480767 0.011906630 sample estimates: frequency of outliers (expected: 0.00796812749003984 ) 0.007550336
| Mixed effects logit model (all vars) | Mixed effects logit model (final) | |||||||
|---|---|---|---|---|---|---|---|---|
| Predictors | Odds Ratios | std. Error | CI | p | Odds Ratios | std. Error | CI | p |
| Intercept | 0.83 | 0.23 | 0.48 – 1.43 | 0.499 | 0.86 | 0.24 | 0.49 – 1.48 | 0.576 |
| Concurrent detection | 0.88 | 0.26 | 0.50 – 1.56 | 0.665 | ||||
| Choice latency [log] | 0.90 | 0.06 | 0.80 – 1.02 | 0.093 | 0.90 | 0.06 | 0.80 – 1.01 | 0.082 |
| Icon condition | 0.86 | 0.09 | 0.71 – 1.04 | 0.129 | 0.85 | 0.09 | 0.70 – 1.04 | 0.116 |
| BNT score | 0.91 | 0.04 | 0.83 – 1.00 | 0.045 | 0.91 | 0.04 | 0.83 – 0.99 | 0.030 |
| EV spread | 2.31 | 1.21 | 0.82 – 6.46 | 0.111 | ||||
| D: Cost | 0.93 | 0.23 | 0.57 – 1.51 | 0.769 | 0.94 | 0.23 | 0.57 – 1.53 | 0.793 |
| D: Waterbody pollution | 0.96 | 0.26 | 0.56 – 1.62 | 0.868 | 0.97 | 0.26 | 0.57 – 1.64 | 0.906 |
| D: House flooding | 1.23 | 0.31 | 0.75 – 2.03 | 0.418 | 1.24 | 0.32 | 0.75 – 2.04 | 0.402 |
| Experience | 0.91 | 0.29 | 0.49 – 1.69 | 0.771 | 0.92 | 0.29 | 0.50 – 1.71 | 0.801 |
| D:E Cost | 1.28 | 0.44 | 0.65 – 2.51 | 0.469 | 1.27 | 0.44 | 0.65 – 2.49 | 0.487 |
| D:E Waterbody pollution | 0.92 | 0.40 | 0.39 – 2.16 | 0.849 | 0.90 | 0.39 | 0.38 – 2.10 | 0.802 |
| D:E House flooding | 1.86 | 0.77 | 0.82 – 4.18 | 0.135 | 1.83 | 0.76 | 0.81 – 4.13 | 0.143 |
| CBMD:BNT | 1.01 | 0.15 | 0.76 – 1.36 | 0.923 | ||||
| Gamble pair G5 | 0.81 | 0.08 | 0.66 – 0.99 | 0.037 | ||||
| Random Effects | ||||||||
| σ2 | 3.29 | 3.29 | ||||||
| τ00 | 0.10 participant.id | 0.11 participant.id | ||||||
| ICC | 0.03 | 0.03 | ||||||
| N | 298 participant.id | 298 participant.id | ||||||
| Observations | 2384 | 2384 | ||||||
| Marginal R2 / Conditional R2 | 0.016 / 0.046 | 0.017 / 0.047 | ||||||
| Deviance | 2984.196 | 2980.560 | ||||||
| AIC | 3111.701 | 3106.174 | ||||||
| AICc | 3111.904 | 3106.327 | ||||||
| log-Likelihood | -1540.851 | -1540.087 | ||||||
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
## Warning in sprintf("%f", abs(x)%%1): probable complete loss of accuracy in
## modulus
| Concurrent detections (all variables) | Concurrent detections (final) | Preference change (all variables) | Preference change (final) | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Odds Ratios | SE | CI | p | Odds Ratios | SE | CI | p | Odds Ratios | SE | CI | p | Odds Ratios | SE | CI | p |
| Intercept | 0.00 | 0.00 | 0.00 – 0.09 | 0.001 | 0.00 | 0.00 | 0.00 – 0.03 | <0.001 | 0.83 | 0.23 | 0.48 – 1.43 | 0.499 | 0.86 | 0.24 | 0.49 – 1.48 | 0.576 |
| Choice latency [log] | 1.80 | 0.33 | 1.26 – 2.57 | 0.001 | 1.80 | 0.33 | 1.26 – 2.58 | 0.001 | 0.90 | 0.06 | 0.80 – 1.02 | 0.093 | 0.90 | 0.06 | 0.80 – 1.01 | 0.082 |
| Icon condition | 2.70 | 1.55 | 0.88 – 8.33 | 0.083 | 2.65 | 1.52 | 0.86 – 8.16 | 0.089 | 0.86 | 0.09 | 0.71 – 1.04 | 0.129 | 0.85 | 0.09 | 0.70 – 1.04 | 0.116 |
| Concurrent detection | 0.88 | 0.26 | 0.50 – 1.56 | 0.665 | ||||||||||||
| EV spread | 2.31 | 1.21 | 0.82 – 6.46 | 0.111 | ||||||||||||
| Gamble pair G5 | 0.81 | 0.08 | 0.66 – 0.99 | 0.037 | ||||||||||||
| CRT score | 1.12 | 0.87 | 0.24 – 5.13 | 0.884 | ||||||||||||
| GLT score | 0.81 | 0.63 | 0.17 – 3.75 | 0.786 | ||||||||||||
| BNT score | 2.02 | 1.00 | 0.77 – 5.33 | 0.153 | 1.86 | 0.49 | 1.11 – 3.13 | 0.018 | 0.91 | 0.04 | 0.83 – 1.00 | 0.045 | 0.91 | 0.04 | 0.83 – 0.99 | 0.030 |
| D: Bathing restrictions | 1.00 | 0.63 | 0.29 – 3.41 | 0.999 | 0.98 | 0.61 | 0.29 – 3.34 | 0.975 | ||||||||
| D: Cost | 0.93 | 0.23 | 0.57 – 1.51 | 0.769 | 0.94 | 0.23 | 0.57 – 1.53 | 0.793 | ||||||||
| D: House flooding | 1.97 | 0.59 | 1.10 – 3.54 | 0.023 | 1.99 | 0.60 | 1.11 – 3.58 | 0.022 | 1.23 | 0.31 | 0.75 – 2.03 | 0.418 | 1.24 | 0.32 | 0.75 – 2.04 | 0.402 |
| D: Waterbody pollution | 0.26 | 0.14 | 0.09 – 0.73 | 0.011 | 0.26 | 0.14 | 0.09 – 0.73 | 0.010 | 0.96 | 0.26 | 0.56 – 1.62 | 0.868 | 0.97 | 0.26 | 0.57 – 1.64 | 0.906 |
| Domain rank | 1.16 | 0.28 | 0.72 – 1.87 | 0.548 | ||||||||||||
| Experience | 0.73 | 0.28 | 0.35 – 1.55 | 0.415 | 0.73 | 0.28 | 0.35 – 1.54 | 0.406 | 0.91 | 0.29 | 0.49 – 1.69 | 0.771 | 0.92 | 0.29 | 0.50 – 1.71 | 0.801 |
| Age | 0.92 | 0.02 | 0.88 – 0.97 | 0.001 | 0.93 | 0.02 | 0.89 – 0.97 | 0.001 | ||||||||
| Female | 0.99 | 0.58 | 0.31 – 3.11 | 0.985 | ||||||||||||
| CBMD:BNT | 1.01 | 0.15 | 0.76 – 1.36 | 0.923 | ||||||||||||
| CRT:GLT | 1.12 | 0.50 | 0.47 – 2.68 | 0.792 | ||||||||||||
| CRT:BNT | 0.89 | 0.22 | 0.55 – 1.43 | 0.627 | ||||||||||||
| D:E Waterbody pollution | 4.92 | 4.66 | 0.77 – 31.51 | 0.092 | 5.03 | 4.78 | 0.78 – 32.33 | 0.089 | 0.92 | 0.40 | 0.39 – 2.16 | 0.849 | 0.90 | 0.39 | 0.38 – 2.10 | 0.802 |
| D:E House flooding | 1.68 | 1.43 | 0.32 – 8.92 | 0.542 | 1.65 | 1.39 | 0.31 – 8.64 | 0.556 | 1.86 | 0.77 | 0.82 – 4.18 | 0.135 | 1.83 | 0.76 | 0.81 – 4.13 | 0.143 |
| D:E Cost | 1.28 | 0.44 | 0.65 – 2.51 | 0.469 | 1.27 | 0.44 | 0.65 – 2.49 | 0.487 | ||||||||
| Random Effects | ||||||||||||||||
| σ2 | 3.29 | 3.29 | 3.29 | 3.29 | ||||||||||||
| τ00 | 15.74 participant.id | 16.20 participant.id | 0.10 participant.id | 0.11 participant.id | ||||||||||||
| ICC | 0.83 | 0.83 | 0.03 | 0.03 | ||||||||||||
| N | 298 participant.id | 298 participant.id | 298 participant.id | 298 participant.id | ||||||||||||
| Observations | 2384 | 2384 | 2384 | 2384 | ||||||||||||
| Marginal R2 / Conditional R2 | 0.111 / 0.846 | 0.103 / 0.849 | 0.016 / 0.046 | 0.017 / 0.047 | ||||||||||||
| Deviance | 569.524 | 568.860 | 2984.196 | 2980.560 | ||||||||||||
| AIC | 980.536 | 969.532 | 3111.701 | 3106.174 | ||||||||||||
| AICc | 980.825 | 969.664 | 3111.904 | 3106.327 | ||||||||||||
| log-Likelihood | -472.268 | -472.766 | -1540.851 | -1540.087 | ||||||||||||
COST: Wilcoxon (one-sided, paired) signed rank test with H_0 that risk attitude change is not higher for individuals who have experienced outcome
H_0 rejected
Estimate (pseudo-median): 4, p-value= 0, z = -13.958 EKF: Wilcoxon (one-sided, paired) signed rank test with H_0 that risk attitude change is not higher for individuals who have experienced outcome
H_0 rejected
Estimate (pseudo-median): 4.0001, p-value= 0, z = -13.737
FLOOD-H: Wilcoxon (one-sided, paired) signed rank test with H_0 that risk attitude change is not higher for individuals who have experienced outcome
FLOOD-R: Wilcoxon (one-sided, paired) signed rank test with H_0 that risk attitude change is not higher for individuals who have experienced outcome
FLOOD-R: Wilcoxon (one-sided, paired) signed rank test with H_0 that risk attitude change is not higher for individuals who have experienced outcome