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Introduction
Here we fit multilevel models to assess the delayed impact of sending multiple human feedback messages
on the effort people spend on their preparatory activities and the likelihood that they would have returned
to the next session if it was part of an unpaid intervention. Specifically, we include a factor that captures
if a person has received feedback so far and a factor that captures how many times a person has received
feedback.

Required files:

• Data/data_rl_samples.csv

Setup
First, we load the rethinking package, which we need to fit and sample from models. We also load formatR
for formatting.
library(formatR) # For formatting
library(rethinking) # For Bayesian models

Also, we set the number of chains used for fitting the models.
NUM_CHAINS = 4 # our value: 4

Data file
We load the pre-processed data.
df = read.csv(file = "Data/data_rl_samples.csv")
df$Prev_Feedback_Binary = as.integer(df$Prev_Feedback_Count > 0)
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Fit model for effort
First we fit a model for the effort.
# Create a data list to be used for the model
dat_list_effort <- list(

effort = df$effort,
humansupport = df$a,
id = df$cons_id + 1, # needs to start at 1
prev_humansupport = df$Prev_Feedback_Binary,
prev_humansupport_mult = df$Prev_Feedback_Count

)

set.seed(18)

ml.effort <- ulam(
alist(

effort ~ dstudent(v, mu, sigma),
mu <- a_bar + z[id] * sigma_a + b_prevhs * prev_humansupport + b_prevhsm * prev_humansupport_mult,
v ~ gamma(2,0.1),
z[id] ~ dnorm(0, 1),
sigma_a ~ dexp(1),
a_bar ~ dnorm(5, 10),
sigma ~ dexp(1),
b_prevhs ~ dnorm(0, 10),
b_prevhsm ~ dnorm(0, 10)

), data = dat_list_effort, chains=NUM_CHAINS, log_lik = TRUE, cores=NUM_CHAINS, iter = 3000
)

## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
##
## Chain 1 Iteration: 1 / 3000 [ 0%] (Warmup)

## Chain 1 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:

## Chain 1 Exception: gamma_lpdf: Random variable is 0, but must be positive finite! (in ’/tmp/Rtmp6N9yDH/model-1701880c48c.stan’, line 25, column 4 to column 31)

## Chain 1 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,

## Chain 1 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.

## Chain 1

## Chain 1 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:

## Chain 1 Exception: gamma_lpdf: Random variable is 0, but must be positive finite! (in ’/tmp/Rtmp6N9yDH/model-1701880c48c.stan’, line 25, column 4 to column 31)

## Chain 1 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,

## Chain 1 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.

## Chain 1

## Chain 1 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:

## Chain 1 Exception: gamma_lpdf: Random variable is 0, but must be positive finite! (in ’/tmp/Rtmp6N9yDH/model-1701880c48c.stan’, line 25, column 4 to column 31)

## Chain 1 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,

## Chain 1 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.

## Chain 1
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## Chain 2 Iteration: 1 / 3000 [ 0%] (Warmup)

## Chain 2 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:

## Chain 2 Exception: gamma_lpdf: Random variable is inf, but must be positive finite! (in ’/tmp/Rtmp6N9yDH/model-1701880c48c.stan’, line 25, column 4 to column 31)

## Chain 2 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,

## Chain 2 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.

## Chain 2

## Chain 2 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:

## Chain 2 Exception: gamma_lpdf: Random variable is inf, but must be positive finite! (in ’/tmp/Rtmp6N9yDH/model-1701880c48c.stan’, line 25, column 4 to column 31)

## Chain 2 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,

## Chain 2 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.

## Chain 2

## Chain 2 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:

## Chain 2 Exception: gamma_lpdf: Random variable is 0, but must be positive finite! (in ’/tmp/Rtmp6N9yDH/model-1701880c48c.stan’, line 25, column 4 to column 31)

## Chain 2 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,

## Chain 2 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.

## Chain 2

## Chain 2 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:

## Chain 2 Exception: student_t_lpdf: Scale parameter is inf, but must be positive finite! (in ’/tmp/Rtmp6N9yDH/model-1701880c48c.stan’, line 29, column 4 to column 41)

## Chain 2 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,

## Chain 2 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.

## Chain 2

## Chain 3 Iteration: 1 / 3000 [ 0%] (Warmup)

## Chain 3 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:

## Chain 3 Exception: gamma_lpdf: Random variable is 0, but must be positive finite! (in ’/tmp/Rtmp6N9yDH/model-1701880c48c.stan’, line 25, column 4 to column 31)

## Chain 3 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,

## Chain 3 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.

## Chain 3

## Chain 3 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:

## Chain 3 Exception: gamma_lpdf: Random variable is 0, but must be positive finite! (in ’/tmp/Rtmp6N9yDH/model-1701880c48c.stan’, line 25, column 4 to column 31)

## Chain 3 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,

## Chain 3 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.

## Chain 3

## Chain 3 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:

## Chain 3 Exception: gamma_lpdf: Random variable is 0, but must be positive finite! (in ’/tmp/Rtmp6N9yDH/model-1701880c48c.stan’, line 25, column 4 to column 31)

## Chain 3 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,

## Chain 3 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.
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## Chain 3

## Chain 3 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:

## Chain 3 Exception: gamma_lpdf: Random variable is 0, but must be positive finite! (in ’/tmp/Rtmp6N9yDH/model-1701880c48c.stan’, line 25, column 4 to column 31)

## Chain 3 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,

## Chain 3 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.

## Chain 3

## Chain 3 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:

## Chain 3 Exception: gamma_lpdf: Random variable is 0, but must be positive finite! (in ’/tmp/Rtmp6N9yDH/model-1701880c48c.stan’, line 25, column 4 to column 31)

## Chain 3 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,

## Chain 3 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.

## Chain 3

## Chain 4 Iteration: 1 / 3000 [ 0%] (Warmup)

## Chain 4 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:

## Chain 4 Exception: gamma_lpdf: Random variable is 0, but must be positive finite! (in ’/tmp/Rtmp6N9yDH/model-1701880c48c.stan’, line 25, column 4 to column 31)

## Chain 4 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,

## Chain 4 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.

## Chain 4

## Chain 4 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:

## Chain 4 Exception: gamma_lpdf: Random variable is 0, but must be positive finite! (in ’/tmp/Rtmp6N9yDH/model-1701880c48c.stan’, line 25, column 4 to column 31)

## Chain 4 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,

## Chain 4 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.

## Chain 4

## Chain 4 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:

## Chain 4 Exception: gamma_lpdf: Random variable is 0, but must be positive finite! (in ’/tmp/Rtmp6N9yDH/model-1701880c48c.stan’, line 25, column 4 to column 31)

## Chain 4 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,

## Chain 4 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.

## Chain 4

## Chain 4 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:

## Chain 4 Exception: gamma_lpdf: Random variable is 0, but must be positive finite! (in ’/tmp/Rtmp6N9yDH/model-1701880c48c.stan’, line 25, column 4 to column 31)

## Chain 4 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,

## Chain 4 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.

## Chain 4

## Chain 4 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:

## Chain 4 Exception: gamma_lpdf: Random variable is 0, but must be positive finite! (in ’/tmp/Rtmp6N9yDH/model-1701880c48c.stan’, line 25, column 4 to column 31)

## Chain 4 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,

## Chain 4 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.
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## Chain 4

## Chain 1 Iteration: 100 / 3000 [ 3%] (Warmup)
## Chain 4 Iteration: 100 / 3000 [ 3%] (Warmup)
## Chain 3 Iteration: 100 / 3000 [ 3%] (Warmup)
## Chain 1 Iteration: 200 / 3000 [ 6%] (Warmup)
## Chain 2 Iteration: 100 / 3000 [ 3%] (Warmup)
## Chain 4 Iteration: 200 / 3000 [ 6%] (Warmup)
## Chain 1 Iteration: 300 / 3000 [ 10%] (Warmup)
## Chain 3 Iteration: 200 / 3000 [ 6%] (Warmup)
## Chain 2 Iteration: 200 / 3000 [ 6%] (Warmup)
## Chain 4 Iteration: 300 / 3000 [ 10%] (Warmup)
## Chain 1 Iteration: 400 / 3000 [ 13%] (Warmup)
## Chain 3 Iteration: 300 / 3000 [ 10%] (Warmup)
## Chain 2 Iteration: 300 / 3000 [ 10%] (Warmup)
## Chain 4 Iteration: 400 / 3000 [ 13%] (Warmup)
## Chain 1 Iteration: 500 / 3000 [ 16%] (Warmup)
## Chain 3 Iteration: 400 / 3000 [ 13%] (Warmup)
## Chain 2 Iteration: 400 / 3000 [ 13%] (Warmup)
## Chain 4 Iteration: 500 / 3000 [ 16%] (Warmup)
## Chain 1 Iteration: 600 / 3000 [ 20%] (Warmup)
## Chain 3 Iteration: 500 / 3000 [ 16%] (Warmup)
## Chain 1 Iteration: 700 / 3000 [ 23%] (Warmup)
## Chain 2 Iteration: 500 / 3000 [ 16%] (Warmup)
## Chain 4 Iteration: 600 / 3000 [ 20%] (Warmup)
## Chain 3 Iteration: 600 / 3000 [ 20%] (Warmup)
## Chain 1 Iteration: 800 / 3000 [ 26%] (Warmup)
## Chain 2 Iteration: 600 / 3000 [ 20%] (Warmup)
## Chain 4 Iteration: 700 / 3000 [ 23%] (Warmup)
## Chain 3 Iteration: 700 / 3000 [ 23%] (Warmup)
## Chain 1 Iteration: 900 / 3000 [ 30%] (Warmup)
## Chain 4 Iteration: 800 / 3000 [ 26%] (Warmup)
## Chain 2 Iteration: 700 / 3000 [ 23%] (Warmup)
## Chain 3 Iteration: 800 / 3000 [ 26%] (Warmup)
## Chain 1 Iteration: 1000 / 3000 [ 33%] (Warmup)
## Chain 4 Iteration: 900 / 3000 [ 30%] (Warmup)
## Chain 2 Iteration: 800 / 3000 [ 26%] (Warmup)
## Chain 3 Iteration: 900 / 3000 [ 30%] (Warmup)
## Chain 4 Iteration: 1000 / 3000 [ 33%] (Warmup)
## Chain 1 Iteration: 1100 / 3000 [ 36%] (Warmup)
## Chain 2 Iteration: 900 / 3000 [ 30%] (Warmup)
## Chain 3 Iteration: 1000 / 3000 [ 33%] (Warmup)
## Chain 1 Iteration: 1200 / 3000 [ 40%] (Warmup)
## Chain 4 Iteration: 1100 / 3000 [ 36%] (Warmup)
## Chain 2 Iteration: 1000 / 3000 [ 33%] (Warmup)
## Chain 3 Iteration: 1100 / 3000 [ 36%] (Warmup)
## Chain 1 Iteration: 1300 / 3000 [ 43%] (Warmup)
## Chain 4 Iteration: 1200 / 3000 [ 40%] (Warmup)
## Chain 2 Iteration: 1100 / 3000 [ 36%] (Warmup)
## Chain 3 Iteration: 1200 / 3000 [ 40%] (Warmup)
## Chain 1 Iteration: 1400 / 3000 [ 46%] (Warmup)
## Chain 4 Iteration: 1300 / 3000 [ 43%] (Warmup)
## Chain 2 Iteration: 1200 / 3000 [ 40%] (Warmup)
## Chain 3 Iteration: 1300 / 3000 [ 43%] (Warmup)
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## Chain 1 Iteration: 1500 / 3000 [ 50%] (Warmup)
## Chain 1 Iteration: 1501 / 3000 [ 50%] (Sampling)
## Chain 4 Iteration: 1400 / 3000 [ 46%] (Warmup)
## Chain 2 Iteration: 1300 / 3000 [ 43%] (Warmup)
## Chain 3 Iteration: 1400 / 3000 [ 46%] (Warmup)
## Chain 1 Iteration: 1600 / 3000 [ 53%] (Sampling)
## Chain 2 Iteration: 1400 / 3000 [ 46%] (Warmup)
## Chain 4 Iteration: 1500 / 3000 [ 50%] (Warmup)
## Chain 4 Iteration: 1501 / 3000 [ 50%] (Sampling)
## Chain 3 Iteration: 1500 / 3000 [ 50%] (Warmup)
## Chain 3 Iteration: 1501 / 3000 [ 50%] (Sampling)
## Chain 1 Iteration: 1700 / 3000 [ 56%] (Sampling)
## Chain 2 Iteration: 1500 / 3000 [ 50%] (Warmup)
## Chain 2 Iteration: 1501 / 3000 [ 50%] (Sampling)
## Chain 4 Iteration: 1600 / 3000 [ 53%] (Sampling)
## Chain 3 Iteration: 1600 / 3000 [ 53%] (Sampling)
## Chain 1 Iteration: 1800 / 3000 [ 60%] (Sampling)
## Chain 2 Iteration: 1600 / 3000 [ 53%] (Sampling)
## Chain 4 Iteration: 1700 / 3000 [ 56%] (Sampling)
## Chain 3 Iteration: 1700 / 3000 [ 56%] (Sampling)
## Chain 1 Iteration: 1900 / 3000 [ 63%] (Sampling)
## Chain 2 Iteration: 1700 / 3000 [ 56%] (Sampling)
## Chain 4 Iteration: 1800 / 3000 [ 60%] (Sampling)
## Chain 3 Iteration: 1800 / 3000 [ 60%] (Sampling)
## Chain 1 Iteration: 2000 / 3000 [ 66%] (Sampling)
## Chain 2 Iteration: 1800 / 3000 [ 60%] (Sampling)
## Chain 4 Iteration: 1900 / 3000 [ 63%] (Sampling)
## Chain 3 Iteration: 1900 / 3000 [ 63%] (Sampling)
## Chain 1 Iteration: 2100 / 3000 [ 70%] (Sampling)
## Chain 2 Iteration: 1900 / 3000 [ 63%] (Sampling)
## Chain 4 Iteration: 2000 / 3000 [ 66%] (Sampling)
## Chain 3 Iteration: 2000 / 3000 [ 66%] (Sampling)
## Chain 1 Iteration: 2200 / 3000 [ 73%] (Sampling)
## Chain 2 Iteration: 2000 / 3000 [ 66%] (Sampling)
## Chain 4 Iteration: 2100 / 3000 [ 70%] (Sampling)
## Chain 3 Iteration: 2100 / 3000 [ 70%] (Sampling)
## Chain 1 Iteration: 2300 / 3000 [ 76%] (Sampling)
## Chain 2 Iteration: 2100 / 3000 [ 70%] (Sampling)
## Chain 4 Iteration: 2200 / 3000 [ 73%] (Sampling)
## Chain 3 Iteration: 2200 / 3000 [ 73%] (Sampling)
## Chain 1 Iteration: 2400 / 3000 [ 80%] (Sampling)
## Chain 2 Iteration: 2200 / 3000 [ 73%] (Sampling)
## Chain 4 Iteration: 2300 / 3000 [ 76%] (Sampling)
## Chain 3 Iteration: 2300 / 3000 [ 76%] (Sampling)
## Chain 1 Iteration: 2500 / 3000 [ 83%] (Sampling)
## Chain 2 Iteration: 2300 / 3000 [ 76%] (Sampling)
## Chain 4 Iteration: 2400 / 3000 [ 80%] (Sampling)
## Chain 3 Iteration: 2400 / 3000 [ 80%] (Sampling)
## Chain 1 Iteration: 2600 / 3000 [ 86%] (Sampling)
## Chain 2 Iteration: 2400 / 3000 [ 80%] (Sampling)
## Chain 4 Iteration: 2500 / 3000 [ 83%] (Sampling)
## Chain 3 Iteration: 2500 / 3000 [ 83%] (Sampling)
## Chain 1 Iteration: 2700 / 3000 [ 90%] (Sampling)
## Chain 2 Iteration: 2500 / 3000 [ 83%] (Sampling)
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## Chain 4 Iteration: 2600 / 3000 [ 86%] (Sampling)
## Chain 3 Iteration: 2600 / 3000 [ 86%] (Sampling)
## Chain 1 Iteration: 2800 / 3000 [ 93%] (Sampling)
## Chain 4 Iteration: 2700 / 3000 [ 90%] (Sampling)
## Chain 2 Iteration: 2600 / 3000 [ 86%] (Sampling)
## Chain 1 Iteration: 2900 / 3000 [ 96%] (Sampling)
## Chain 3 Iteration: 2700 / 3000 [ 90%] (Sampling)
## Chain 4 Iteration: 2800 / 3000 [ 93%] (Sampling)
## Chain 2 Iteration: 2700 / 3000 [ 90%] (Sampling)
## Chain 1 Iteration: 3000 / 3000 [100%] (Sampling)
## Chain 1 finished in 34.4 seconds.
## Chain 3 Iteration: 2800 / 3000 [ 93%] (Sampling)
## Chain 4 Iteration: 2900 / 3000 [ 96%] (Sampling)
## Chain 2 Iteration: 2800 / 3000 [ 93%] (Sampling)
## Chain 3 Iteration: 2900 / 3000 [ 96%] (Sampling)
## Chain 4 Iteration: 3000 / 3000 [100%] (Sampling)
## Chain 4 finished in 35.5 seconds.
## Chain 2 Iteration: 2900 / 3000 [ 96%] (Sampling)
## Chain 3 Iteration: 3000 / 3000 [100%] (Sampling)
## Chain 3 finished in 36.1 seconds.
## Chain 2 Iteration: 3000 / 3000 [100%] (Sampling)
## Chain 2 finished in 36.3 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 35.6 seconds.
## Total execution time: 36.5 seconds.

output_effort = precis(ml.effort, prob = 0.95)

## 679 vector or matrix parameters hidden. Use depth=2 to show them.

output_effort

## mean sd 2.5% 97.5% rhat ess_bulk
## v 4.1515900 0.40929274 3.4198325 5.0388605 0.9998222 3372.047
## sigma_a 1.9834494 0.07037274 1.8496150 2.1306603 1.0012782 1752.579
## a_bar 5.6749766 0.09999863 5.4758398 5.8649170 1.0042487 1501.550
## sigma 1.5602106 0.05189254 1.4611780 1.6622812 1.0001640 2641.097
## b_prevhs 0.2302264 0.23510199 -0.2361153 0.6885817 1.0004848 3141.675
## b_prevhsm 0.1441044 0.17700566 -0.2057524 0.4960004 1.0002102 3333.044

traceplot(ml.effort, pars = c("b_prevhsm"))
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Let’s compute the posterior probability that b_prevhsm is greater than 0.
set.seed(18) # For reproducibility
samples.ml.effort <- extract.samples(ml.effort)
Heffort_post <- samples.ml.effort$b_prevhsm[which(samples.ml.effort$b_prevhsm >

0)]
Heffort_post_p <- round(length(Heffort_post)/length(samples.ml.effort$b_prevhsm),

5)
Heffort_post_p

## [1] 0.7955

And let’s also compute an effect size.
b_prevhsm = output_effort$mean[6]
sd = output_effort$mean[4]
effect_size = b_prevhsm/sd
round(effect_size, 2)

## [1] 0.09

rm(ml.effort, output_effort, samples.ml.effort)

Fit model for return likelihood
And we also fit a model for the return likelihood.
# Create a data list to be used for the model
dat_list_dropout <- list(

8



dropout = df$dropout_response,
humansupport = df$a,
id = df$cons_id + 1, # needs to start at 1
prev_humansupport = df$Prev_Feedback_Binary,
prev_humansupport_mult = df$Prev_Feedback_Count

)

set.seed(18)

ml.dropout <- ulam(
alist(

dropout ~ dnorm(mu, sigma),
mu <- a_bar + z[id] + b_prevhs * prev_humansupport + b_prevhsm * prev_humansupport_mult,
z[id] ~ dnorm(0, sigma_a),
sigma_a ~ dexp(1),
a_bar ~ dnorm(0, 10),
sigma ~ dexp(1),
b_prevhs ~ dnorm(0, 10),
b_prevhsm ~ dnorm(0, 10)

), data = dat_list_dropout, chains=NUM_CHAINS, log_lik = TRUE, cores=NUM_CHAINS, iter = 3000, control=list(adapt_delta=.999)
)

## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
##
## Chain 1 Iteration: 1 / 3000 [ 0%] (Warmup)

## Chain 1 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:

## Chain 1 Exception: normal_lpdf: Scale parameter is 0, but must be positive! (in ’/tmp/Rtmp6N9yDH/model-1702a83d4d0.stan’, line 23, column 4 to column 30)

## Chain 1 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,

## Chain 1 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.

## Chain 1

## Chain 2 Iteration: 1 / 3000 [ 0%] (Warmup)
## Chain 3 Iteration: 1 / 3000 [ 0%] (Warmup)
## Chain 4 Iteration: 1 / 3000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 3000 [ 3%] (Warmup)
## Chain 3 Iteration: 100 / 3000 [ 3%] (Warmup)
## Chain 4 Iteration: 100 / 3000 [ 3%] (Warmup)
## Chain 2 Iteration: 100 / 3000 [ 3%] (Warmup)
## Chain 2 Iteration: 200 / 3000 [ 6%] (Warmup)
## Chain 1 Iteration: 200 / 3000 [ 6%] (Warmup)
## Chain 4 Iteration: 200 / 3000 [ 6%] (Warmup)
## Chain 2 Iteration: 300 / 3000 [ 10%] (Warmup)
## Chain 4 Iteration: 300 / 3000 [ 10%] (Warmup)
## Chain 2 Iteration: 400 / 3000 [ 13%] (Warmup)
## Chain 1 Iteration: 300 / 3000 [ 10%] (Warmup)
## Chain 3 Iteration: 200 / 3000 [ 6%] (Warmup)
## Chain 4 Iteration: 400 / 3000 [ 13%] (Warmup)
## Chain 1 Iteration: 400 / 3000 [ 13%] (Warmup)
## Chain 2 Iteration: 500 / 3000 [ 16%] (Warmup)
## Chain 1 Iteration: 500 / 3000 [ 16%] (Warmup)
## Chain 2 Iteration: 600 / 3000 [ 20%] (Warmup)
## Chain 4 Iteration: 500 / 3000 [ 16%] (Warmup)
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## Chain 3 Iteration: 300 / 3000 [ 10%] (Warmup)
## Chain 1 Iteration: 600 / 3000 [ 20%] (Warmup)
## Chain 4 Iteration: 600 / 3000 [ 20%] (Warmup)
## Chain 2 Iteration: 700 / 3000 [ 23%] (Warmup)
## Chain 1 Iteration: 700 / 3000 [ 23%] (Warmup)
## Chain 3 Iteration: 400 / 3000 [ 13%] (Warmup)
## Chain 4 Iteration: 700 / 3000 [ 23%] (Warmup)
## Chain 1 Iteration: 800 / 3000 [ 26%] (Warmup)
## Chain 2 Iteration: 800 / 3000 [ 26%] (Warmup)
## Chain 3 Iteration: 500 / 3000 [ 16%] (Warmup)
## Chain 4 Iteration: 800 / 3000 [ 26%] (Warmup)
## Chain 3 Iteration: 600 / 3000 [ 20%] (Warmup)
## Chain 1 Iteration: 900 / 3000 [ 30%] (Warmup)
## Chain 2 Iteration: 900 / 3000 [ 30%] (Warmup)
## Chain 4 Iteration: 900 / 3000 [ 30%] (Warmup)
## Chain 3 Iteration: 700 / 3000 [ 23%] (Warmup)
## Chain 4 Iteration: 1000 / 3000 [ 33%] (Warmup)
## Chain 1 Iteration: 1000 / 3000 [ 33%] (Warmup)
## Chain 2 Iteration: 1000 / 3000 [ 33%] (Warmup)
## Chain 3 Iteration: 800 / 3000 [ 26%] (Warmup)
## Chain 4 Iteration: 1100 / 3000 [ 36%] (Warmup)
## Chain 2 Iteration: 1100 / 3000 [ 36%] (Warmup)
## Chain 1 Iteration: 1100 / 3000 [ 36%] (Warmup)
## Chain 3 Iteration: 900 / 3000 [ 30%] (Warmup)
## Chain 4 Iteration: 1200 / 3000 [ 40%] (Warmup)
## Chain 2 Iteration: 1200 / 3000 [ 40%] (Warmup)
## Chain 1 Iteration: 1200 / 3000 [ 40%] (Warmup)
## Chain 3 Iteration: 1000 / 3000 [ 33%] (Warmup)
## Chain 4 Iteration: 1300 / 3000 [ 43%] (Warmup)
## Chain 2 Iteration: 1300 / 3000 [ 43%] (Warmup)
## Chain 1 Iteration: 1300 / 3000 [ 43%] (Warmup)
## Chain 3 Iteration: 1100 / 3000 [ 36%] (Warmup)
## Chain 4 Iteration: 1400 / 3000 [ 46%] (Warmup)
## Chain 2 Iteration: 1400 / 3000 [ 46%] (Warmup)
## Chain 1 Iteration: 1400 / 3000 [ 46%] (Warmup)
## Chain 3 Iteration: 1200 / 3000 [ 40%] (Warmup)
## Chain 4 Iteration: 1500 / 3000 [ 50%] (Warmup)
## Chain 4 Iteration: 1501 / 3000 [ 50%] (Sampling)
## Chain 2 Iteration: 1500 / 3000 [ 50%] (Warmup)
## Chain 2 Iteration: 1501 / 3000 [ 50%] (Sampling)
## Chain 3 Iteration: 1300 / 3000 [ 43%] (Warmup)
## Chain 4 Iteration: 1600 / 3000 [ 53%] (Sampling)
## Chain 1 Iteration: 1500 / 3000 [ 50%] (Warmup)
## Chain 1 Iteration: 1501 / 3000 [ 50%] (Sampling)
## Chain 2 Iteration: 1600 / 3000 [ 53%] (Sampling)
## Chain 4 Iteration: 1700 / 3000 [ 56%] (Sampling)
## Chain 3 Iteration: 1400 / 3000 [ 46%] (Warmup)
## Chain 1 Iteration: 1600 / 3000 [ 53%] (Sampling)
## Chain 2 Iteration: 1700 / 3000 [ 56%] (Sampling)
## Chain 4 Iteration: 1800 / 3000 [ 60%] (Sampling)
## Chain 3 Iteration: 1500 / 3000 [ 50%] (Warmup)
## Chain 3 Iteration: 1501 / 3000 [ 50%] (Sampling)
## Chain 1 Iteration: 1700 / 3000 [ 56%] (Sampling)
## Chain 3 Iteration: 1600 / 3000 [ 53%] (Sampling)
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## Chain 4 Iteration: 1900 / 3000 [ 63%] (Sampling)
## Chain 2 Iteration: 1800 / 3000 [ 60%] (Sampling)
## Chain 3 Iteration: 1700 / 3000 [ 56%] (Sampling)
## Chain 1 Iteration: 1800 / 3000 [ 60%] (Sampling)
## Chain 4 Iteration: 2000 / 3000 [ 66%] (Sampling)
## Chain 3 Iteration: 1800 / 3000 [ 60%] (Sampling)
## Chain 2 Iteration: 1900 / 3000 [ 63%] (Sampling)
## Chain 3 Iteration: 1900 / 3000 [ 63%] (Sampling)
## Chain 1 Iteration: 1900 / 3000 [ 63%] (Sampling)
## Chain 4 Iteration: 2100 / 3000 [ 70%] (Sampling)
## Chain 2 Iteration: 2000 / 3000 [ 66%] (Sampling)
## Chain 3 Iteration: 2000 / 3000 [ 66%] (Sampling)
## Chain 3 Iteration: 2100 / 3000 [ 70%] (Sampling)
## Chain 4 Iteration: 2200 / 3000 [ 73%] (Sampling)
## Chain 1 Iteration: 2000 / 3000 [ 66%] (Sampling)
## Chain 2 Iteration: 2100 / 3000 [ 70%] (Sampling)
## Chain 3 Iteration: 2200 / 3000 [ 73%] (Sampling)
## Chain 4 Iteration: 2300 / 3000 [ 76%] (Sampling)
## Chain 1 Iteration: 2100 / 3000 [ 70%] (Sampling)
## Chain 3 Iteration: 2300 / 3000 [ 76%] (Sampling)
## Chain 2 Iteration: 2200 / 3000 [ 73%] (Sampling)
## Chain 4 Iteration: 2400 / 3000 [ 80%] (Sampling)
## Chain 3 Iteration: 2400 / 3000 [ 80%] (Sampling)
## Chain 1 Iteration: 2200 / 3000 [ 73%] (Sampling)
## Chain 3 Iteration: 2500 / 3000 [ 83%] (Sampling)
## Chain 2 Iteration: 2300 / 3000 [ 76%] (Sampling)
## Chain 4 Iteration: 2500 / 3000 [ 83%] (Sampling)
## Chain 3 Iteration: 2600 / 3000 [ 86%] (Sampling)
## Chain 1 Iteration: 2300 / 3000 [ 76%] (Sampling)
## Chain 4 Iteration: 2600 / 3000 [ 86%] (Sampling)
## Chain 3 Iteration: 2700 / 3000 [ 90%] (Sampling)
## Chain 2 Iteration: 2400 / 3000 [ 80%] (Sampling)
## Chain 3 Iteration: 2800 / 3000 [ 93%] (Sampling)
## Chain 1 Iteration: 2400 / 3000 [ 80%] (Sampling)
## Chain 4 Iteration: 2700 / 3000 [ 90%] (Sampling)
## Chain 2 Iteration: 2500 / 3000 [ 83%] (Sampling)
## Chain 3 Iteration: 2900 / 3000 [ 96%] (Sampling)
## Chain 4 Iteration: 2800 / 3000 [ 93%] (Sampling)
## Chain 3 Iteration: 3000 / 3000 [100%] (Sampling)
## Chain 3 finished in 77.7 seconds.
## Chain 1 Iteration: 2500 / 3000 [ 83%] (Sampling)
## Chain 2 Iteration: 2600 / 3000 [ 86%] (Sampling)
## Chain 4 Iteration: 2900 / 3000 [ 96%] (Sampling)
## Chain 1 Iteration: 2600 / 3000 [ 86%] (Sampling)
## Chain 2 Iteration: 2700 / 3000 [ 90%] (Sampling)
## Chain 4 Iteration: 3000 / 3000 [100%] (Sampling)
## Chain 4 finished in 81.5 seconds.
## Chain 1 Iteration: 2700 / 3000 [ 90%] (Sampling)
## Chain 2 Iteration: 2800 / 3000 [ 93%] (Sampling)
## Chain 1 Iteration: 2800 / 3000 [ 93%] (Sampling)
## Chain 2 Iteration: 2900 / 3000 [ 96%] (Sampling)
## Chain 1 Iteration: 2900 / 3000 [ 96%] (Sampling)
## Chain 2 Iteration: 3000 / 3000 [100%] (Sampling)
## Chain 2 finished in 87.1 seconds.
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## Chain 1 Iteration: 3000 / 3000 [100%] (Sampling)
## Chain 1 finished in 88.2 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 83.6 seconds.
## Total execution time: 88.4 seconds.

output_dropout = precis(ml.dropout, prob = 0.95)

## 679 vector or matrix parameters hidden. Use depth=2 to show them.

output_dropout

## mean sd 2.5% 97.5% rhat ess_bulk
## sigma_a 2.19609999 0.07106392 2.0636968 2.3410802 1.000021 6156.060
## a_bar 1.65864078 0.09917930 1.4673092 1.8522795 1.001561 1278.129
## sigma 1.59157832 0.02756146 1.5391598 1.6475207 1.000448 4900.747
## b_prevhs 0.21745681 0.20235133 -0.1739553 0.6168928 1.000718 3541.077
## b_prevhsm 0.06156302 0.15563550 -0.2434849 0.3661082 1.000374 3720.357

traceplot(ml.dropout, pars = c("b_prevhsm"))
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Let’s compute the posterior probability that b_prevhsm is greater than 0.
set.seed(18) # For reproducibility
samples.ml.dropout <- extract.samples(ml.dropout)
print(paste0("Number of samples extracted: ", length(samples.ml.dropout$b_prevhsm)))

## [1] "Number of samples extracted: 6000"
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Hdrop_post <- samples.ml.dropout$b_prevhsm[which(samples.ml.dropout$b_prevhsm >
0)]

Hdrop_post_p <- round(length(Hdrop_post)/length(samples.ml.dropout$b_prevhsm),
5)

Hdrop_post_p

## [1] 0.656

And let’s also compute an effect size.
b_prevhsm = output_dropout$mean[5]
sd = output_dropout$mean[3]
effect_size = b_prevhsm/sd
round(effect_size, 2)

## [1] 0.04
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