Analysis code belonging to manuscript "Temporal Stability of Need Satisfaction and Frustration Profiles and their Association with Motivational Functioning"
DOI: 10.4121/fdcf5644-cad1-4ace-949a-a852a37ce86a
Datacite citation style
Dataset
Usage statistics
Licence CC BY-NC-ND 4.0
Analysis code belonging to the manuscript "Temporal Stability of Need Satisfaction and Frustration Profiles and their Association with Motivational Functioning"
The current study aimed to identify subpopulations of students with different combinations of need satisfaction and frustration, and assessed the extent to which such combinations (i.e., students’ individual profiles) remained stable over the course of about two months. We also examined how these profiles were associated with students’ autonomous motivation, controlled motivation, and amotivation. The following research questions guided the present study:
1: Which subpopulations of students, characterized by different combinations of need-based experiences, exist in the present sample, taking into account the global and specific levels of their need-based experiences?
2: To what extent is the pattern of subpopulations of students, and students’ individual membership in specific profiles, stable over time?
3: How is membership to a specific profile associated with students’ autonomous motivation, controlled motivation, and amotivation?
Longitudinal design, bifactor ESEM, quantitative data (questionnaire data/ self-reports)
History
- 2024-03-13 first online, published, posted
Publisher
4TU.ResearchDataFormat
input files MplusFunding
- Netherlands Organisation for Scientific Research (grant code 023.004.015) Netherlands Organisation for Scientific Research
Organizations
Eindhoven School of Education, Eindhoven University of Technology, The NetherlandsSubstantive-Methodological Synergy Research Laboratory, Concordia University, Montreal, Canada
Department of Education, Faculty of Social and Behavioural Sciences, Utrecht University, The Netherlands
Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Belgium
School of Sport Studies, Fontys University of Applied Sciences, Eindhoven, The Netherlands
Department Educational Sciences, Faculty of Social Sciences, Leiden University, The Netherlands
DATA
Files (54)
- 4,584 bytesMD5:
ecb22f1d069ef6c83f5321571fb28662
README.txt - 6,186 bytesMD5:
b7ec4e7f60dc402873d72840450350b2
1. measurement models MOT .inp - 3,512 bytesMD5:
c60f0c8b744f1643f45cac2059698dc5
1. measurement models MOT 1a three-factor cfa t0.inp - 3,646 bytesMD5:
8802df9bd147972978f138d48b76fd5a
1. measurement models MOT 1b three-factor set-esem t0.inp - 3,512 bytesMD5:
1033ac80b2e1186249eae64171bed0a1
1. measurement models MOT 2a three-factor cfa t4.inp - 3,646 bytesMD5:
9c650a655e9147e0543ae532199154f1
1. measurement models MOT 2b three-factor set-esem t4.inp - 5,908 bytesMD5:
c0a2cae9a01b5ccc96ddc8a10ac97d17
1. measurement models MOT 3a configural.inp - 5,915 bytesMD5:
0a48904173b3590026e24a790a72c815
1. measurement models MOT 3b weak.inp - 6,185 bytesMD5:
0e256851d8b5c42aa40770484ef18760
1. measurement models MOT 3c strong.inp - 6,203 bytesMD5:
d1daee131d61525d20c70d410976e8bf
1. measurement models MOT 3e var-covar.inp - 6,298 bytesMD5:
e3eb7364e5b354c5545cafc049434531
1. measurement models MOT 3f mean.inp - 3,791 bytesMD5:
b080c475d9c906300e583193a0ed95d0
1. measurement models NSNF 1a six-factor cfa t0.inp - 5,434 bytesMD5:
9e3285a0615019e0b600963c85ec3b71
1. measurement models NSNF 1b six-factor esem t0.inp - 4,117 bytesMD5:
c2070fa77886e9f31c032719b4934ff4
1. measurement models NSNF 1c bifactor cfa t0.inp - 5,865 bytesMD5:
c215c31e41b110141efe37537b4d368b
1. measurement models NSNF 1d bifactor esem t0.inp - 4,290 bytesMD5:
34b3a17f81c667d379b156d8eefed1e1
1. measurement models NSNF 1e two-bifactor cfa t0.inp - 5,925 bytesMD5:
932f1c0fd9fc82216d42c3389b26b88a
1. measurement models NSNF 1f two-bifactor esem t0.inp - 3,791 bytesMD5:
2bee035564781268d2cf0d093a06567f
1. measurement models NSNF 2a six-factor cfa t4.inp - 5,438 bytesMD5:
de26516955efb37ef6314b357006bc98
1. measurement models NSNF 2b six-factor esem t4.inp - 4,117 bytesMD5:
63883be38710dc90ca70b4d155dc4deb
1. measurement models NSNF 2c bifactor cfa t4.inp - 5,865 bytesMD5:
26ec974dda68bcc5db66450b05a6d42a
1. measurement models NSNF 2d bifactor esem t4.inp - 4,186 bytesMD5:
4675883c3433c226149dd707738a148e
1. measurement models NSNF 2e two-bifactor cfa t4.inp - 5,925 bytesMD5:
7699942f643bc1399353e60ffd293d5e
1. measurement models NSNF 2f two-bifactor esem t4.inp - 11,870 bytesMD5:
ce302c3043e3424d178f98ffef4020fa
1. measurement models NSNF 3a configural.inp - 11,898 bytesMD5:
39c57cc3d8775d7818658ef5a6c6d8da
1. measurement models NSNF 3b weak.inp - 12,548 bytesMD5:
0b4ef79165ce21ebb5340605624324da
1. measurement models NSNF 3c strong.inp - 12,549 bytesMD5:
cd3abdc632a1ac80e39030a617cdd1fe
1. measurement models NSNF 3d strict.inp - 13,091 bytesMD5:
40c456b54201f88c9f933c83fcc0dba3
1. measurement models NSNF 3e var-covar.inp - 13,467 bytesMD5:
8c7b02eebe51df921d68723c9fb2b9ca
1. measurement models NSNF 3f mean (rotated).inp - 13,098 bytesMD5:
168fe55c49758d34a3c6fa40804b021e
1. measurement models NSNF 3f mean.inp - 1,975 bytesMD5:
1e4bec3be304c91bacb791e5df499129
2. class enumeration time 1 meanvar 1 profile.inp - 2,007 bytesMD5:
af6698726cfc6990d975a093fb27c771
2. class enumeration time 1 meanvar 2 profile.inp - 2,039 bytesMD5:
f9e67b395064bbcd4acdab1ec407d8e7
2. class enumeration time 1 meanvar 3 profile.inp - 2,071 bytesMD5:
1d792e59cb22135897200d805a830192
2. class enumeration time 1 meanvar 4 profile.inp - 2,106 bytesMD5:
552636beb380349aa86b0dae939328ca
2. class enumeration time 1 meanvar 5 profile.inp - 2,138 bytesMD5:
c29b3d0c0a1ce5dd18b9fd7d3997ed9f
2. class enumeration time 1 meanvar 6 profile.inp - 2,170 bytesMD5:
582d9c53b558a11fd28791adb34309d3
2. class enumeration time 1 meanvar 7 profile.inp - 2,202 bytesMD5:
a5c1ff5803e3101b94ccd850d47081eb
2. class enumeration time 1 meanvar 8 profile.inp - 1,975 bytesMD5:
728f586f26c66b49261d1e1be05f751c
2. class enumeration time 2 meanvar 1 profile.inp - 2,007 bytesMD5:
fa20e230ef76ba694c1d31faba195979
2. class enumeration time 2 meanvar 2 profile.inp - 2,039 bytesMD5:
f9cabd8ba6fd3b31f58a613ea6602ee0
2. class enumeration time 2 meanvar 3 profile.inp - 2,074 bytesMD5:
af47f61caf7c50e5ad08fcae1a363aa0
2. class enumeration time 2 meanvar 4 profile.inp - 2,106 bytesMD5:
0eb851a5ece85a23ea37fd53559c7ef4
2. class enumeration time 2 meanvar 5 profile.inp - 2,138 bytesMD5:
3ef0fca110fad42b4c8c3441134badc8
2. class enumeration time 2 meanvar 6 profile.inp - 2,170 bytesMD5:
3f5369f758aa572a94ab46e14ea7e274
2. class enumeration time 2 meanvar 7 profile.inp - 2,202 bytesMD5:
f26c6ceb66f8faf4784a6e2fe4185122
2. class enumeration time 2 meanvar 8 profile.inp - 2,276 bytesMD5:
eb7b153adadaf5b17f19742d42341e41
3. profile similarity_meanvar 4 profile - 1 configural.inp - 2,342 bytesMD5:
58769eff1bdf77cf4312ea31cece4a1f
3. profile similarity_meanvar 4 profile - 2 structural.inp - 2,408 bytesMD5:
f9ab526de47457b02e1d1984455372e2
3. profile similarity_meanvar 4 profile - 3 dispersion.inp - 2,518 bytesMD5:
afdcaf869d6dc6b195938aef695e6d5c
3. profile similarity_meanvar 4 profile - 4 distributional.inp - 2,208 bytesMD5:
1e2319df6c5dca24b42a106c022e97af
4. transitions_manual 4 profile transitions.inp - 2,191 bytesMD5:
9deecad976a67fcff10563b0a9addd89
4. transitions_manual 4 profile.inp - 4,237 bytesMD5:
dd101d6ff51a23b82bf4ecd4c84068fb
5. outcomes_manual 4 profile transitions 1 free across time and profile.inp - 3,450 bytesMD5:
6d11314baac36cd12348e9b5b6012f6e
5. outcomes_manual 4 profile transitions 2 equal.inp -
download all files (zip)
257,909 bytes unzipped