Data from modeling published in the paper "Phase-space analysis of a two-section InP laser as an all-optical spiking neuron: dependency on control and design parameters"
doi: 10.4121/fa5c829d-0304-4c55-97d5-be1cafa318f9
This upload contains the complete Python code to generate the figures as shown in the paper "Phase-space analysis of a two-section InP laser as an all-optical spiking neuron: dependency on control and design parameters". The code comprises the Yamada rate equation model to calculate the carrier densities and photon number, as well as underlying compact models to simulate an integrated two-section laser neuron in the generic InP technology platform as mentioned in the paper. To calculate the outcome of the model, Pythons ODE solver is used. A 2D sweep function is implemented to generate the data for the 2D parameter sweep plot (figure 7). Alternatively, two addition folders with pre-generated data using this model is provided to generate this figure. All generated data is saved as figures directly, or in the numpy format.
- 2024-07-10 first online, published, posted
DATA
- 2,141 bytesMD5:
1ea4048b76c8e4ef860ad4cf7accd36f
README.txt - 340,334 bytesMD5:
a704d2effe1b2e652ff1cff515174564
Fig.2.png - 287,522 bytesMD5:
dca0051a108e314911127c347a17dab0
Fig.3.png - 224,689 bytesMD5:
2d0f62fa706cf1f2a202130f31032e81
Fig.4.Bottom.png - 2,163,398 bytesMD5:
9eede92f48c9c856f01562f07cef161f
Fig.4.Top.png - 591,571 bytesMD5:
58af84910cfdf406f511cd580f374eab
Fig.5.a_0.0871_mA_1.8000_V_S0,Ng0,Nq01.0000e+00,-11.5100,0.0000e+00.png - 652,303 bytesMD5:
2bbd04082752df30d34b7b8e3556de72
Fig.5.b_0.0871_mA_1.7970_V_S0,Ng0,Nq01.0000e+00,-11.5100,0.0000e+00.png - 613,420 bytesMD5:
26264a1c47e9d3c82ae9e665b21ef0e5
Fig.5.c_0.0550_mA_1.0000_V_S0,Ng0,Nq01.0000e+00,-11.5100,0.0000e+00.png - 628,326 bytesMD5:
181edc891e7b1ed9d924b7efffe448f3
Fig.5.d_0.0550_mA_1.5000_V_S0,Ng0,Nq01.0000e+00,-11.5100,0.0000e+00.png - 1,562,304 bytesMD5:
bf8634f300e5de4a8f20a0e935189ded
Fig.6.a_r1_0.866_I_0.050000_mA_V_bias_[0, 1, 2, 3]_V_S0,Ng0,Nq01.0000e+02,54.7000,2.0000e+22.png - 432,593 bytesMD5:
f9b275c1f35b62fdb3c1ba7e049fb1aa
Fig.6.b_r1_0.866_I_0.050000_mA_V_bias_[0, 1, 2, 3]_V_S0,Ng0,Nq01.0000e+02,54.7000,2.0000e+22.png - 1,584,135 bytesMD5:
9fce2a9cab15af97cedaf6e58cf935fb
Fig.6.c_r1_0.4_I_0.050000_mA_V_bias_[0, 1, 2, 3]_V_S0,Ng0,Nq01.0000e+02,54.7000,2.0000e+22.png - 392,470 bytesMD5:
0e0586341a41a5101a89665965c87f89
Fig.6.d_r1_0.4_I_0.050000_mA_V_bias_[0, 1, 2, 3]_V_S0,Ng0,Nq01.0000e+02,54.7000,2.0000e+22.png - 157,189 bytesMD5:
fe2e6b2d1a41889ccbf21fd0fa475171
Fig.7.(a)-(d)_r1_0.3_marked_False.png - 158,654 bytesMD5:
044ac977d3f726608f0eb2389e8a86e2
Fig.7.(a)-(d)_r1_0.3_marked_True.png - 157,464 bytesMD5:
44542a133f5d712330f891d0ffbdbf67
Fig.7.(a)-(d)_r1_0.5_marked_False.png - 158,969 bytesMD5:
5932342a50a4b9807276a288769717b3
Fig.7.(a)-(d)_r1_0.5_marked_True.png - 157,788 bytesMD5:
768c5d9eef387af9a77b7bd0d8649a57
Fig.7.(a)-(d)_r1_0.7_marked_False.png - 159,244 bytesMD5:
5cbcd716fbdcbdcdc1b984a90b295253
Fig.7.(a)-(d)_r1_0.7_marked_True.png - 157,931 bytesMD5:
23ac430527beee2e3304ffae2f50ab45
Fig.7.(a)-(d)_r1_0.9_marked_False.png - 159,370 bytesMD5:
422ca97b6919666bc317739827fc4bfe
Fig.7.(a)-(d)_r1_0.9_marked_True.png - 238,056 bytesMD5:
e6d244ec7640a562d4f39533a654c955
Fig.7.(e)-(f)_r_vs_I_at_V=0.14V.png - 232,911 bytesMD5:
670f5252b866dff86ea7c808edf71ad9
Fig.7.(e)-(f)_r_vs_I_at_V=1.0V.png - 43,456 bytesMD5:
6899477cd8b49074d9a992193a370866
model.py -
download all files (zip)
11,256,238 bytes unzipped