Data underlying the publication: Probing Machine Learning Models Based on High-Throughput Experimentation Data for the Discovery of Asymmetric Hydrogenation Catalysts
DOI:10.4121/ecbd4b91-c434-4bdf-a0ed-4e9e0fb05e94.v1
The DOI displayed above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
DOI: 10.4121/ecbd4b91-c434-4bdf-a0ed-4e9e0fb05e94
DOI: 10.4121/ecbd4b91-c434-4bdf-a0ed-4e9e0fb05e94
Datacite citation style
Kalikadien, Adarsh V.; Valsecchi, Cecile; van Putten, Robbert; Maes, Tor; Muuronen, Mikko et. al. (2024): Data underlying the publication: Probing Machine Learning Models Based on High-Throughput Experimentation Data for the Discovery of Asymmetric Hydrogenation Catalysts. Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/ecbd4b91-c434-4bdf-a0ed-4e9e0fb05e94.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
In this study, we investigated whether machine learning techniques could be used to accelerate the identification of the most efficient chiral ligand for Rh-based hydrogenation of olefins. The dataset contains tabular data, jupyter notebooks with analysis, interactive figures and DFT data. Specific details on what each folder contains can be found in the readme. Additionally, our machine learning pipeline can be found at https://github.com/EPiCs-group/obelix-ml-pipeline and the OBeLiX workflow to featurize the catalyst structures can be found at https://github.com/EPiCs-group/obelix.
History
- 2024-07-18 first online, published, posted
Publisher
4TU.ResearchDataFormat
tabular data/.xlsx, jupyter notebooks/.ipynb, interactive figures/.html, DFT input/(.xyz or .inp), DFT output/.log, Python objects with prediction results/.pklOrganizations
TU Delft, Faculty of Applied Sciences, Department of Chemical EngineeringDATA
Files (16)
- 2,626 bytesMD5:
0804956182aba5dd122df1334969c87breadme.txt - 791,906 bytesMD5:
07599d762210dde366cc95887034305bC=C_AH_dataset.xlsx - 699,882 bytesMD5:
8c7a173b8a391c2f2be7fc861e879a04data_analysis.ipynb - 3,984,378 bytesMD5:
51fd9d397dd42596750e025c48a8ee95dft_nbd_model_literature_comparison.zip - 15,703 bytesMD5:
2429d2a0124f430c07e57f8a9044eab2dict_res_obj1.pkl - 39,289 bytesMD5:
70ed388f00add19e0f88b6f08e065ec6dict_res_obj2.pkl - 7,397 bytesMD5:
457d8333b13f78dd2f71da88c42ae2a7dict_res_obj3.pkl - 2,196 bytesMD5:
e95d285b22bcaf235c72f6a07a236d4cdict_res_obj4.pkl - 37,904,925 bytesMD5:
daf0852e341aeb56fbf002f7c875bee3Figure2.html - 17,324,059 bytesMD5:
b10ac8cadf3b5119e8c037559347f2fdFigure3.html - 1,085,404 bytesMD5:
f018d9147c822bad06b3144f08a63b1bligand_list.pdf - 483,295 bytesMD5:
b999f3e8f553f84cc2a13e69125094cbLiterature_comparison_Reaxys_SciFinder.ipynb - 34,819 bytesMD5:
94dd2258570114a80f977e3919705f6dml_results_tables.xlsx - 414,403,142 bytesMD5:
b0af63e2fb23cf0904da1e8a570b2303nbd_metal_ligand_dft_output.zip - 152,747,150 bytesMD5:
fc79de8d5ca41bdaada50de156fcd319PCA.html - 950,413 bytesMD5:
ce99d88bd8b1dcba3a5f6f0be12ee522view.ipynb -
download all files (zip)
630,476,584 bytes unzipped





