Data underlying the publication: Probing Machine Learning Models Based on High-Throughput Experimentation Data for the Discovery of Asymmetric Hydrogenation Catalysts
doi:10.4121/ecbd4b91-c434-4bdf-a0ed-4e9e0fb05e94.v1
The doi above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
doi: 10.4121/ecbd4b91-c434-4bdf-a0ed-4e9e0fb05e94
doi: 10.4121/ecbd4b91-c434-4bdf-a0ed-4e9e0fb05e94
Datacite citation style:
Kalikadien, Adarsh V.; Valsecchi, Cecile; van Putten, Robbert; Maes, Tor; Muuronen, Mikko et. al. (2024): Data underlying the publication: Probing Machine Learning Models Based on High-Throughput Experimentation Data for the Discovery of Asymmetric Hydrogenation Catalysts. Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/ecbd4b91-c434-4bdf-a0ed-4e9e0fb05e94.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
In this study, we investigated whether machine learning techniques could be used to accelerate the identification of the most efficient chiral ligand for Rh-based hydrogenation of olefins. The dataset contains tabular data, jupyter notebooks with analysis, interactive figures and DFT data. Specific details on what each folder contains can be found in the readme. Additionally, our machine learning pipeline can be found at https://github.com/EPiCs-group/obelix-ml-pipeline and the OBeLiX workflow to featurize the catalyst structures can be found at https://github.com/EPiCs-group/obelix.
history
- 2024-07-18 first online, published, posted
publisher
4TU.ResearchData
format
tabular data/.xlsx, jupyter notebooks/.ipynb, interactive figures/.html, DFT input/(.xyz or .inp), DFT output/.log, Python objects with prediction results/.pkl
organizations
TU Delft, Faculty of Applied Sciences, Department of Chemical Engineering
DATA
files (16)
- 2,626 bytesMD5:
0804956182aba5dd122df1334969c87b
readme.txt - 791,906 bytesMD5:
07599d762210dde366cc95887034305b
C=C_AH_dataset.xlsx - 699,882 bytesMD5:
8c7a173b8a391c2f2be7fc861e879a04
data_analysis.ipynb - 3,984,378 bytesMD5:
51fd9d397dd42596750e025c48a8ee95
dft_nbd_model_literature_comparison.zip - 15,703 bytesMD5:
2429d2a0124f430c07e57f8a9044eab2
dict_res_obj1.pkl - 39,289 bytesMD5:
70ed388f00add19e0f88b6f08e065ec6
dict_res_obj2.pkl - 7,397 bytesMD5:
457d8333b13f78dd2f71da88c42ae2a7
dict_res_obj3.pkl - 2,196 bytesMD5:
e95d285b22bcaf235c72f6a07a236d4c
dict_res_obj4.pkl - 37,904,925 bytesMD5:
daf0852e341aeb56fbf002f7c875bee3
Figure2.html - 17,324,059 bytesMD5:
b10ac8cadf3b5119e8c037559347f2fd
Figure3.html - 1,085,404 bytesMD5:
f018d9147c822bad06b3144f08a63b1b
ligand_list.pdf - 483,295 bytesMD5:
b999f3e8f553f84cc2a13e69125094cb
Literature_comparison_Reaxys_SciFinder.ipynb - 34,819 bytesMD5:
94dd2258570114a80f977e3919705f6d
ml_results_tables.xlsx - 414,403,142 bytesMD5:
b0af63e2fb23cf0904da1e8a570b2303
nbd_metal_ligand_dft_output.zip - 152,747,150 bytesMD5:
fc79de8d5ca41bdaada50de156fcd319
PCA.html - 950,413 bytesMD5:
ce99d88bd8b1dcba3a5f6f0be12ee522
view.ipynb -
download all files (zip)
630,476,584 bytes unzipped