Supporting data for: "Iterative modal reconstruction for sparse particle tracking data"
doi:10.4121/caa059d2-7657-4301-a805-767e9ca98eab.v1
The doi above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
doi: 10.4121/caa059d2-7657-4301-a805-767e9ca98eab
doi: 10.4121/caa059d2-7657-4301-a805-767e9ca98eab
Datacite citation style:
Grille Guerra, Adrian; Andrea Sciacchitano; Fulvio Scarano (2024): Supporting data for: "Iterative modal reconstruction for sparse particle tracking data". Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/caa059d2-7657-4301-a805-767e9ca98eab.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
The dataset in this repository complements the publication: Adrian Grille Guerra, Andrea Sciacchitano, Fulvio Scarano; Iterative modal reconstruction for sparse particle tracking data. Physics of Fluids 1 July 2024; 36 (7): 075107. https://doi.org/10.1063/5.0209527. The dataset contains the electronic supplementary material also available in the online version of the journal (three videos), a digital version of the figures of the publication in Matlab figure format, the full dataset discussed in the publication and also a sample code of the proposed methodology.
history
- 2024-07-02 first online, published, posted
publisher
4TU.ResearchData
format
video (.mp4), data figures (Matlab .fig), Matlab code (.m), Matlab data (.mat)
associated peer-reviewed publication
Iterative modal reconstruction for sparse particle tracking data
organizations
TU Delft, Faculty of Aerospace Engineering, Department of Flow Physics and Technology
DATA
files (2)
- 1,853 bytesMD5:
aaa0473123dd3b5e75df62e6880cb174
README.txt - 1,227,996,388 bytesMD5:
24e7a4083e99ee3bc0676c41e9a88194
IMR.zip -
download all files (zip)
1,227,998,241 bytes unzipped