Data and Optimisation model for space heating and committed emissions for the built environment
DOI: 10.4121/22256668
Datacite citation style
Software
Usage statistics
Categories
Geolocation
Licence CC0
Interoperability
This dataset is used to arrive to the results presented in the paper `Reducing committed emissions of heating towards 2050: Analysis of scenarios for the insulation of buildings and the decarbonisation of electricity generation' from Kaandorp et al. (2022). The dataset consists of a Python code together with the input data used to run the code. The code is used to compute which technology mix is to be applied in a neighbourhood to optimally minimise the carbon emissions associated with space heating between 2030 and 2050. The neighbourhoods used in this study are 'Felix Meritis', 'Prinses Irenebuurt', and 'Molenwijk'. The model is run for scenarios which represents different rates of the insulation of buildings and the decarbonisation of electricity production between 2020 and 2050.
The python code requires the following data files (provided in this collection):
- Address_Neigborhood_Heat_Demand.xlsx
- Heat_technology.xlsx (or Heat_teachnology_highEFhydrogen.xlsx to run change the input of the emission factors related to hydrogen).
- Scenario_Settings.xlsx
The data file 'Scenario_Setting.xlsx' is used for a first-order sensitivity analysis).
The code in 'post_processing.py' is used to process the output data from 'Address_Gurobi_scenario_loop_5y_timestep.py' (in this dataset) to facilitate analysis.
History
- 2023-05-31 first online, published, posted
Publisher
4TU.ResearchDataFormat
python code (*.py); *.xlsxAssociated peer-reviewed publication
Reducing committed emissions of heating towards 2050: Analysis of scenarios for the insulation of buildings and the decarbonisation of electricity generationReferences
- https://esrinl-content.maps.arcgis.com/home/group.html?id=31ae027e6c88449cb22292d8f9ed861b#overview
- https://www.rvo.nl/sites/default/files/2020/03/Nederlandse-energiedragerlijst-versie-januari-2020.pdf
- https://data.4tu.nl/my/datasets/9cb086e8-7958-480c-8418-05d93bc8ebf8/https%3A%2F%2Fwww.co2emissiefactoren.nl%2Fwp-content%2Fuploads%2F2020%2F01%2FCE-Delft-2020-Memo-emissiekentallen_elektriciteit-190426-januari-2020.pdf
- https://data.4tu.nl/my/datasets/9cb086e8-7958-480c-8418-05d93bc8ebf8/https%3A%2F%2Fce.nl%2Fpublicaties%2Fstream-goederenvervoer-2020%2F
- https://www.co2emissiefactoren.nl/wp-content/uploads/2020/01/CE-Delft-2020-Memo-emissiekentallen_elektriciteit-190426-januari-2020.pdf
- https://ce.nl/publicaties/stream-goederenvervoer-2020/
- https://ce.nl/wp-content/uploads/2021/03/CE_Delft_3H06_Ketenemissies_warmtelevering_DEF.pdf
- https://docplayer.nl/66489523-Uniforme-maatlat-gebouwde-omgeving-umgo-voor-de-warmtevoorziening-in-de-woning-en-utiliteitsbouw.html
Funding
- ENabling LARGE-scale integration of technology hubs to enhance community resiliency via DDS in various urban FWE nexuses (grant code 438-17-407) [more info...] Dutch Research Council
Organizations
TU Delft, Faculty of Civil Engineering and Geoschences, Department of Water ManagementDATA
Files (6)
- 23,168 bytesMD5:
d891754bd70d709a236a41c01e36d80dAddress_Gurobi_scenario_loop_5y_timestep.py - 101,445 bytesMD5:
8484efaee00a2fbffb7e6281c314823eAddress_Neigborhood_Heat_Demand.xlsx - 30,214 bytesMD5:
8b0125c44a1f59fe164e0d356eb772dfHeat_technology.xlsx - 28,999 bytesMD5:
32ae086e15b016bb29e978f3d7fdf891Heat_technology_highEFhydrogen.xlsx - 8,340 bytesMD5:
8ef9e4f57ea1b33df2d0f7643b298f1fPost_pocessing.py - 9,622 bytesMD5:
4009df23404b7d38ddeeeb045dc04986Scenario_settings.xlsx -
download all files (zip)
201,788 bytes unzipped





