Beyond the Hype: Deep Neural Networks Outperform Established Methods Using A ChEMBL Bioactivity Benchmark Set [version 1]
Datacite citation style
Lenselink, Eelke Bart; ten Dijke, N. (Niels); Bongers, Brandon; Papadatos, G. (George); van Vlijmen, Herman W. T. et. al. (2017): Beyond the Hype: Deep Neural Networks Outperform Established Methods Using A ChEMBL Bioactivity Benchmark Set [version 1]. Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/uuid:547e8014-d662-4852-9840-c1ef065d03ef
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
Version 2 - 2019-01-22 (latest)
Version 1 - 2017-07-31
Usage statistics
4647
views
1462
downloads
Categories
Licence
4TU General Terms of UseInteroperability
This dataset contains the (standardized) data used in the experiments, alongside the scripts used to perform Deep Neural Nets (DNN_Scripts), and the other machine learning methods in both Pipeline Pilot (PP_protocols) and Python/Scikit-Learn (PY_scripts)
History
- 2019-01-22 first online
- 2017-07-31 published, posted
Publisher
Leiden UniversityFormat
media types: application/pdf, application/x-7z-compressed, application/x-gzip, application/zip, text/plain, text/x-c++, text/xmlOrganizations
European Molecular Biology Laboratory;Leiden Academic Centre for Drug Research;
Leiden Institute of Advanced Computer Science
DATA
Files (3)
- 2,135 bytesMD5:
556f61e62c1e3dbebbfda6c13471cbb6
readme.txt - 4,260,005,436 bytesMD5:
0c89ee338964491d208687cebd25a808
All Sonic Anemometer Data.zip - 235,761,703 bytesMD5:
ccd181a41753e2267a9f6a4dc2e6cd74
DNN_paper.zip -
download all files (zip)
4,495,769,274 bytes unzipped