Beyond the Hype: Deep Neural Networks Outperform Established Methods Using A ChEMBL Bioactivity Benchmark Set [version 1]
Datacite citation style:
Lenselink, Eelke Bart; ten Dijke, N. (Niels); Bongers, Brandon; Papadatos, G. (George); van Vlijmen, Herman W. T. et. al. (2017): Beyond the Hype: Deep Neural Networks Outperform Established Methods Using A ChEMBL Bioactivity Benchmark Set [version 1]. Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/uuid:547e8014-d662-4852-9840-c1ef065d03ef
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
choose version:
version 2 - 2019-01-22 (latest)
version 1 - 2017-07-31
This dataset contains the (standardized) data used in the experiments, alongside the scripts used to perform Deep Neural Nets (DNN_Scripts), and the other machine learning methods in both Pipeline Pilot (PP_protocols) and Python/Scikit-Learn (PY_scripts)
history
- 2019-01-22 first online
- 2017-07-31 published, posted
publisher
Leiden University
format
media types: application/pdf, application/x-7z-compressed, application/x-gzip, application/zip, text/plain, text/x-c++, text/xml
organizations
European Molecular Biology Laboratory;Leiden Academic Centre for Drug Research;
Leiden Institute of Advanced Computer Science
DATA
files (3)
- 2,135 bytesMD5:
556f61e62c1e3dbebbfda6c13471cbb6
readme.txt - 4,260,005,436 bytesMD5:
0c89ee338964491d208687cebd25a808
All Sonic Anemometer Data.zip - 235,761,703 bytesMD5:
ccd181a41753e2267a9f6a4dc2e6cd74
DNN_paper.zip -
download all files (zip)
4,495,769,274 bytes unzipped