Data underlying the publication: The rhythm of risk: Exploring spatio-temporal patterns of urban vulnerability with ambulance calls data
doi:10.4121/468af1da-4e27-4d9d-9f80-5d60aa5ccb0d.v1
The doi above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
doi: 10.4121/468af1da-4e27-4d9d-9f80-5d60aa5ccb0d
doi: 10.4121/468af1da-4e27-4d9d-9f80-5d60aa5ccb0d
Datacite citation style:
Sirenko, Mikhail; Comes, Tina; Verbraeck, Alexander (2024): Data underlying the publication: The rhythm of risk: Exploring spatio-temporal patterns of urban vulnerability with ambulance calls data. Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/468af1da-4e27-4d9d-9f80-5d60aa5ccb0d.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
This dataset archive contains processed data used to analyze the spatio-temporal patterns of urban vulnerability through ambulance call records. The data focuses on three major Dutch cities: The Hague, Rotterdam, and Amsterdam. It includes:
- Hourly ambulance call data aggregated over three autumn seasons (2017, 2018, and 2019), spatially allocated to 1 km by 1 km grid cells.
- Gridded socio-demographic data, also aligned to 1 km by 1 km cells, provides insights into population characteristics.
- Shapefiles for city boundaries and districts facilitating spatial analysis and visualization.
For a detailed guide on how to work with and analyze the data, please refer to our GitHub repository.
history
- 2024-10-01 first online, published, posted
publisher
4TU.ResearchData
format
csv, json
associated peer-reviewed publication
The rhythm of risk: Exploring spatio-temporal patterns of urban vulnerability with ambulance calls data
references
derived from
data link
https://alarmeringen.nl/
organizations
TU Delft, Faculty of Technology, Policy and Management, Department of Engineering Systems and Services
DATA
files (19)
- 1,452 bytesMD5:
167736b3e46683a29370241344426d6e
Data README.md - 3,641,952 bytesMD5:
340849383a657b78bc3496922e2ac171
1000x1000.json - 1,617,924 bytesMD5:
8456c5f7ec90ec57c96bcf95465c21fa
1000x1000.json - 2,372,182 bytesMD5:
5e2066565e2e7dfa4703b15ec0c80765
1000x1000.json - 799,826 bytesMD5:
ee23e75925bdac5b2e259c00d0da3772
1000x1000.json - 1,406,431 bytesMD5:
298efb5728d7ea1f13fabd0f265b2c05
cities.json - 344,901 bytesMD5:
c6401f3242f16c23b45f118138dce438
city.json - 842,003 bytesMD5:
323defa88bcb2a2f2ed58a6e44c36c09
city.json - 210,052 bytesMD5:
3116322431cf0eac2f60df3c3b269c68
city.json - 1,362,732 bytesMD5:
73f99091c33a093ff4626453c89cbe44
districts.json - 4,131,251 bytesMD5:
179f37bccf1b89489779fdcfd9fd26e3
districts.json - 636,044 bytesMD5:
c0117208c366d9ab1b340ef239d0b1cd
districts.json - 45,873 bytesMD5:
286de141c691361239443283fa699f61
scaled_spatio_temporal_grid_time_step=4.csv - 93,609 bytesMD5:
85a82cbd9c2888711f55881f77e0d325
spatiotemporal_grid_time_step=1.csv - 55,956 bytesMD5:
a45ab8fcb2168d44ae418ff14f12eff3
spatiotemporal_grid_time_step=1.csv - 81,049 bytesMD5:
dace54e9a1e28c675d251ac536d588a1
spatiotemporal_grid_time_step=1.csv - 43,222 bytesMD5:
5d719b7e47b224a8226634809dd08b9f
spatiotemporal_grid_time_step=4.csv - 24,372 bytesMD5:
32e26b23b6b2b04c2e8a5e1948f64863
spatiotemporal_grid_time_step=4.csv - 35,688 bytesMD5:
50c1c454bf5be0dafa6646829afe903e
spatiotemporal_grid_time_step=4.csv -
download all files (zip)
17,746,519 bytes unzipped