Source code for the publication: Nonmyopic Global Optimisation via Approximate Dynamic Programming
DOI:10.4121/45406971-2516-4306-a69f-b2ad68e6eaea.v1
The DOI displayed above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
DOI: 10.4121/45406971-2516-4306-a69f-b2ad68e6eaea
DOI: 10.4121/45406971-2516-4306-a69f-b2ad68e6eaea
Datacite citation style:
Filippo Airaldi (2025): Source code for the publication: Nonmyopic Global Optimisation via Approximate Dynamic Programming. Version 1. 4TU.ResearchData. software. https://doi.org/10.4121/45406971-2516-4306-a69f-b2ad68e6eaea.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Software
Categories
Licence MIT
Source code for the implementation and simulation of nonmyopic multistep lookahead strategies for the gradient-free optimisation of black-box functions.
History
- 2025-01-08 first online, published, posted
Publisher
4TU.ResearchDataFormat
source code (.py) and simulation results (.csv)Associated peer-reviewed publication
Nonmyopic Global Optimisation via Approximate Dynamic ProgrammingCode hosting project url
https://github.com/FilippoAiraldi/global-optimizationFunding
- CLariNet (grant code 101018826) [more info...] European Research Council
Organizations
TU Delft, Faculty of Mechanical Engineering, Delft Center for Systems and ControlTo access the source code, use the following command:
git clone https://data.4tu.nl/v3/datasets/5b628284-f4c5-4756-bceb-baccad8aae20.git "global-optimization"