Data used in the paper: Hydrological drought forecasts using precipitation data depend on catchment properties and human activities
doi:10.4121/302cd0fd-59da-46e8-ac82-f98fad865751.v1
The doi above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
doi: 10.4121/302cd0fd-59da-46e8-ac82-f98fad865751
doi: 10.4121/302cd0fd-59da-46e8-ac82-f98fad865751
Datacite citation style:
Samuel Sutanto; Syaehuddin, Wahdan (2024): Data used in the paper: Hydrological drought forecasts using precipitation data depend on catchment properties and human activities. Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/302cd0fd-59da-46e8-ac82-f98fad865751.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
Here I provide the SSI-1 derived using the LISFLOOD SFO data from 1991 to 2022. The SPI-x were derived from the ERA5 dataset from 1991-2022. The SGI-1 was derived using the LISFLOOD SFO data from 1990 to 2018. The drought forecasts derived using the Standardized Indices (SSI, SGI, SPI) for European rivers with a lead time of 7-month from 2002 to 2022 can be obtained from the author because the data exceed the limit. Scripts used in the study are provided. Please look at the script readme file.
history
- 2024-02-23 first online, published, posted
publisher
4TU.ResearchData
format
NetCDF, Python
derived from
funding
- ERC Starting Grant
organizations
Wageningen university and research, Department of Environmental Sciences, Earth Systems and Global Change
DATA
files (18)
- 615 bytesMD5:
668f769c59630985a321fa88283ef617
README_script.txt - 2,199 bytesMD5:
96930162a9ef23f177cc059a458a2916
boxplot.py - 1,603 bytesMD5:
de72186cbe2c9172fa7c89a0440972cb
brier_score.py - 1,062 bytesMD5:
0dc6fb3b1adfc70908ff0c0aa81e11b1
correlation_p_value.py - 1,767 bytesMD5:
1d8dbb47af3ae174e59457fdc64eb0d0
forecast_lag_shift.py - 2,023 bytesMD5:
f40b636d87463d65645a50611e98372b
lag_time.py - 1,500 bytesMD5:
f6ec3e6a6a61df6b5abb259213d023db
line_plot.py - 3,705 bytesMD5:
91bea9e7938ff2a222a87de8da491d6e
map_plotting.py - 1,119 bytesMD5:
1334a4ee08540a13b48d442ad312ec9e
masking.py - 611 bytesMD5:
0e2f7056f22cce78fa90da793bf9f7c7
observed_and_probability_for_bs.py - 1,322,416,712 bytesMD5:
163c4abef98b975b196a5041bde11425
SGI1_Lisflood_New_18.nc - 1,459,216,311 bytesMD5:
86bafb789f66ee323dce8e5d26278646
SPI-12_1991_2022_New.nc - 1,459,217,528 bytesMD5:
697ea70e281bef93828ea38a3950edf4
SPI-1_1991_2022_New.nc - 1,459,217,528 bytesMD5:
07261ace166d542e807191194acb1e75
SPI-3_1991_2022_New.nc - 1,459,217,528 bytesMD5:
ee12ddb32a2c51d75e8973664152c27c
SPI-6_1991_2022_New.nc - 7,637 bytesMD5:
9b23992166d49ce7eb362dc988fe6337
SPI_Grid.py - 62,515 bytesMD5:
590490e5eee160e3f17432f3e6e40f82
SPI_Grid_Forecast.py - 1,459,217,528 bytesMD5:
0427558a3215e0b61736e8c640cf1195
SSI-1_1991-2022_New.nc -
download all files (zip)
8,618,589,491 bytes unzipped