EMmerNet deep learning model for ColabScale
DOI:10.4121/205d29e8-88c3-4ba0-ada9-80de95b45a58.v1
The DOI displayed above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
DOI: 10.4121/205d29e8-88c3-4ba0-ada9-80de95b45a58
DOI: 10.4121/205d29e8-88c3-4ba0-ada9-80de95b45a58
Datacite citation style
Bharadwaj, Alok; de Bruin, Reinier; Jakobi, Arjen (2025): EMmerNet deep learning model for ColabScale. Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/205d29e8-88c3-4ba0-ada9-80de95b45a58.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
Tensorflow model for local map optimisation in ColabScale. The model allows context-inclusive cryoEM map optimisation mimicking the physics-informed map optimisation procedures in LocScale-2.0. It has been trained on publicly available cryoEM volumes obtained from the Electron Microscopy Data Bank (EMDB).
History
- 2025-05-28 first online, published, posted
Publisher
4TU.ResearchDataFormat
Tensorflow model in hdf5 formatDerived from
Funding
- PHAGOSCOPY: Dissecting cell-autonomous immunity with ex vivo electron cryo-microscopy (grant code 852880) [more info...] European Research Council
Organizations
Delft University of Technology, Kavli Institute of Nanoscience, Department of BionanoscienceDATA
Files (1)
- 275,024,056 bytesMD5:
a910f4c83c589b38112a32eca059cf08
EMmerNet_highContext.hdf5