Scripts for creating the figures of "Extreme precipitation return levels for multiple durations on a global scale"
doi:10.4121/21293760.v1
The doi above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
doi: 10.4121/21293760
doi: 10.4121/21293760
Datacite citation style:
Gruendemann, Gaby; Zorzetto, Enrico; Beck, Hylke; Schleiss, Marc; Nick van de Giesen et. al. (2023): Scripts for creating the figures of "Extreme precipitation return levels for multiple durations on a global scale". Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/21293760.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
This contains the python scripts in order to recreate the figures of the manuscript: Gründemann, G. J., Zorzetto, E., Beck, H. E., Schleiss, M., Van de Giesen, N., Marani, M., & van der Ent, R. J. (2023). Extreme precipitation return levels for multiple durations on a global scale. Journal of Hydrology, 621, 129558.
history
- 2023-05-22 first online, published, posted
publisher
4TU.ResearchData
format
python script
associated peer-reviewed publication
Extreme precipitation return levels for multiple durations on a global scale
data link
https://doi.org/10.4121/12764429
funding
- Transforming Weather Water data into value-added Information services for sustainable Growth in Africa (grant code 776691) [more info...] European Commission
- European Climate Prediction system (grant code 776613) [more info...] European Commission
- Unravelling the moisture sources in precipitation extremes worldwide (grant code 016.Veni.181.015) [more info...] Dutch Research Council
organizations
TU Delft, Faculty of Civil Engineering and Geosciences, Department of Water Management;Centre for Hydrology, University of Saskatchewan, Canada;
Program in Atmospheric and Oceanic Sciences, Princeton University, USA;
King Abdullah University of Science and Technology (KAUST), Saudi Arabia;
TU Delft, Faculty of Civil Engineering and Geosciences, Department of Geoscience and Remote Sensing;
Dipartimento di Ingegneria Civile, Edile ed Ambientale, Universita’ degli Studi di Padova, Italy;
Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, Australia
DATA
files (1)
- 12,160 bytesMD5:
3f5a5a25bef964072b996e575b79f298
Grundemann_2023_JoH_scripts.zip -
download all files (zip)
12,160 bytes unzipped