Shapenet Illuminants - dataset from "Zero-Shot Day-Night Domain Adaptation with a Physics Prior"
doi:10.4121/15141273.v1
The doi above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
doi: 10.4121/15141273
doi: 10.4121/15141273
Datacite citation style:
Attila Lengyel (2021): Shapenet Illuminants - dataset from "Zero-Shot Day-Night Domain Adaptation with a Physics Prior". Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/15141273.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
Shapenet Illuminants is the synthetic classification dataset used in the ICCV '21 publication "Zero-Shot Day-Night Domain Adaptation with a Physics Prior". The images have been rendered from the ShapeNet dataset using the Mitsuba rendering engine. See the readme for more information on using the dataset.
ArXiv: https://arxiv.org/abs/2108.05137Code: https://github.com/Attila94/CIConv
If you find this dataset useful, please cite:@article{lengyel2021zeroshot, title={Zero-Shot Domain Adaptation with a Physics Prior}, author={Attila Lengyel and Sourav Garg and Michael Milford and Jan C. van Gemert}, year={2021}, eprint={2108.05137}, archivePrefix={arXiv}, primaryClass={cs.CV}}
ArXiv: https://arxiv.org/abs/2108.05137Code: https://github.com/Attila94/CIConv
If you find this dataset useful, please cite:@article{lengyel2021zeroshot, title={Zero-Shot Domain Adaptation with a Physics Prior}, author={Attila Lengyel and Sourav Garg and Michael Milford and Jan C. van Gemert}, year={2021}, eprint={2108.05137}, archivePrefix={arXiv}, primaryClass={cs.CV}}
history
- 2021-08-12 first online, published, posted
publisher
4TU.ResearchData
format
image/png
funding
- Tabula Inscripta: Prior knowledge for deep learning (grant code VI.Vidi.192.100) [more info...] Dutch Research Council
organizations
TU Delft, Faculty of Electrical Engineering, Mathematics and Computer Science, Department of Intelligent Systems;QUT Centre for Robotics
DATA
files (3)
- 219,935 bytesMD5:
72ddb3a9462a56a19f58fc4eb4a38ef2
readme.pdf - 2,865,202,278 bytesMD5:
67dbac73a6a32c7f58fcd221a0227e1d
shapenet-illuminants.zip - 4,957 bytesMD5:
b5ebdc08ae1c9aee3e663a263f9da5ea
shapenet_illuminants.py -
download all files (zip)
2,865,427,170 bytes unzipped